scholarly journals EVALUATION OF FUNGICIDES AGAINST PHYTOPHTHORA AND FUSARIUM (root rot spp.) OF CITRUS ROOTSTOCKS SEEDLINGS

Author(s):  
Shakila Yasmeen ◽  
Muhammad Mumtaz Khan ◽  
Saeed Ahmad ◽  
Mazhar Abbas ◽  
Bushra Sadia ◽  
...  

Citrus is one of the most important fruit crop in the world and is usually grown through grafting technique. Rootstock is one of the significant part in grafted plants and has crutial effect on production, including yield, fruit quality, tree size, tolerance to salts and diseases, and scion compatibility. Citrus is susceptible to several fungal pathogens causing incalculable losses to the crop. Among all soil-borne fungal pathogens, Phytophthora and Fusarium cause the most severe damage to the nursery or orchards plants. This research was planned to evaluate the effectiveness of fungicides as soil drenching and root dipping to control Phytophthora and Fusarium attacking citrus rootstock seedlings at the nursery stage. Different physiological and morphological parameters were studied in the infected plants and data were compared with that of control. The data were recorded and compared concerning rootstock seed and seeding response using standard measures and statistical analysis. The results showed that plants inoculated with Phytophthora and Fusarium root rot spp.when treated with Aliette and Ridomil Gold showed maximum root shoot ratio, fresh dry weight ratio, photosynthetic rate, stomatal conductance, water potential and transpiration rate as compared to untreated plants. The results also depicted that plants treated with Aliette and Ridomil Gold through soil drenching have maximum root shoot ratio, fresh dry weight ratio, photosynthetic rate, stomatal conductance and transpiration rate as compared to root dipped plants. Keywords: Fungal diseases, pathogens, root rot, nursery plants.

Author(s):  
Agung Wahyu Susilo ◽  
Sobir Sobir ◽  
Adinda Wuriandani ◽  
Desta Wirnas

Drought stress can affect changes in physiological, morphological, biochemical,and molecular of plant. Plant in drought stress showed slower growthand development than in normal condition. This research aimed to determine the response of cocoa genotypes in seedling phase to drought stress in morphological and stomata character. This research conducted with split-plot design with main plot were water regimes (25% and 100% available water content). Eleven genotypes were used in this research consisted of six genotypes crosses and five genotypes parents. Variables observed were stem diameter, root volume, root length, leaf area, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, root/shoot ratio, and stomatal conductance. Drought stress decreased values associated with all observed morphological characters and stomata characters. Root/shoot ratio and stomatal conductance can be used to determine genotype with tolerance to drought. Sulawesi 3 x ICCRI 09 showed heighest in root/shoot ratio and stomatal conductance. Sulawesi 3 x ICCRI 09 can be used as candidate of plant material tolerant to drought.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1921
Author(s):  
Yafei Wang ◽  
Guoxin Ma ◽  
Xiaoxue Du ◽  
Yong Liu ◽  
Bin Wang ◽  
...  

Abiotic and biotic stresses both decrease the quality and quantity of cultivated plants. In this study, in order to see the responses of cucumber plants to drought stress and cucumber downy mildew infection, downy mildew infestation at different two levels, B1 (disease infestation) and B2 (no disease infestation), along with three fertigation requirement levels, full fertigation T1, moderate nutrient solution deficit T2 and severe nutrient solution deficit T3, were applied in a greenhouse. Thus, six treatments, i.e., B1T1, B1T2, B1T3, B2T1, B2T2 and B2T3, were set. The leaf gas-exchange parameters were significantly increased under CK (control experiment, B2T1: no disease infestation and full irrigation) treatment, and leaf photosynthesis rate, transpiration rate and stomatal conductance were significantly decreased under the B1T1 treatment. Leaf intercellular CO2 concentration was significantly increased under B1T1 treatment. Leaf photosynthesis rate, transpiration rate, intercellular CO2 concentration and stomatal conductance were significantly decreased under B1T2, B1T3, B2T2 and B2T3 treatments. Compared with treatment CK (B2T1), the plant height of cucumber under B1T1, B1T2, B1T3, B2T2 and B2T3 treatments decreased by 11.41%, 19.05%, 27.48%, 7.55% and 10.62%, respectively; the stem diameter of cucumber under B1T1, B1T2, B1T3, B2T2 and B2T3 treatments decreased by 5.70%, 13.45%, 23.03%, 9.46% and 15.74%, respectively; and leaf area of cucumber under B1T1, B1T2, B1T3, B2T2 and B2T3 treatments decreased by 22.79%, 38.68%, 58.28%, 13.76% and 29.96%, respectively. The root–shoot ratio of cucumber under B1T1, B1T2, B1T3, B2T1, B2T2 and B2T3 treatments was 3.16%, 2.99%, 4.11%, 3.92%, 3.13% and 3.63%, respectively. The root–shoot ratio of cucumber was the highest under the B1T3 treatment.


2012 ◽  
pp. 52-64
Author(s):  
Pet Roey Pascual ◽  
Krienkai Mosaleeyanon ◽  
Kanokwan Romyanon ◽  
Chalermpol Kirdmanee

Salt stress elicits various physiological and growth responses of oil palm. A laboratory experiment was conducted to determine the responses of oil palms cultured in vitro under varying salinity levels (0, 85.5, 171.11, 342.21 and 684.43 mM NaCl) to elevated CO2 (1000 μmol CO2/mol) and PPFD (100±5 μmol m-2s-1) in terms of growth characteristics, pigment contents and photosynthetic abilities. After 14 days of culture, net photosynthetic rate (μmol CO2 m-2s-1) of oil palms across varying salinity levels was 5.33 times higher than those cultured under ambient CO, (380±100 Mmol CO2/mol) and PPFD (50±5 μmol m-2s -1). At increased net photosynthetic rate (elevated CO2 and PPFD), despite having no significant difference in pigment contents (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid) between different CO2 and PPFD levels, dry weight and percent dry matter were 0.26 and 0.11 times higher, respectively, as compared to those cultured under ambient CO2 and PPFD. In the same elevated CO2 and PPFD level, across all salinity levels, stomatal conductance was 0.30 times lower than those cultured under ambient CO2 and PPFD. At reduced stomatal conductance (elevated CO2 and PPFD), transpiration rate was also reduced by 0.30 times. Thus with increased net photosynthetic rate and reduced transpiration rate, water use efficiency was increased by 7.22 times, across all salinity levels, than those cultured at ambient CO2 and PPFD. These were considered essential for NaCl produces iso-osmotic stress.


Author(s):  
İlknur Tındaş ◽  
Ufuk Demirel

The study aimed to identify physiological response of potato to drought. For this aim, a drought experiment was carried out by using two different potato varieties, cv. Desiree and Russet Burbank, under environmentally controlled greenhouse conditions. Drought treatment was initiated at 45 days after emergence (early tuber bulking period) by withholding irrigation for 10 days. Physiological traits such as stomatal conductance, transpiration rate, photosynthetic rate, chlorophyll index, leaf temperature, proline content, malondialdehyde (MDA) accumulation and hydrogen peroxide (H2O2) accumulation, in addition, some yield components average tuber weight, number of tubers and plant tuber yield were evaluated in the study. While the first significant decline in stomatal conductance, transpiration rate, and photosynthetic rate of both varieties was occurred at the 5th day of withholding irrigation, the highest decline was observed at 9th and 10th days of withholding irrigation. Proline content in both varieties increased two times at 10th day of withholding irrigation, however, H2O2 accumulation was not changed significantly by drought treatment. Even though MDA accumulation was increased in both varieties under drought stress conditions, the increase was significant in Desiree whereas, it was not significant in Russet Burbank. In addition, while drought treatment did not change the plant tuber yield in both varieties, it caused to a significant decline in average tuber yield of Russet Burbank, being an important trait for marketable tuber yield.


2019 ◽  
Vol 136 ◽  
pp. 07008
Author(s):  
Shiyao Shan ◽  
Huizhong Luo ◽  
Jinpeng Zhu ◽  
Zhiyu Li ◽  
Huanxiu Li

To study the effects of the reciprocal grafting on the photosynthesis of two genotypes tomato offspring under selenium stress, red ball cherry tomato cherry 5-5-1 and yellow ball cherry tomato yellow RTY-3-2 post-grafting generation (red scion, red rootstock, yellow scion and yellow rootstock) and seedlings (red CK and yellow CK) planted in 10 mg·kg-1 selenium soil, and the pot experiment was carried out to study the effects of the reciprocal grafting on the growth characteristics and the photosynthesis of tomato offspring under selenium stress. The results showed that grafting increased the fresh weight of the organs of the offspring, the ratio of root to shoot, and the functional activity of the roots of the plants, which was conducive to the growth of tomato offspring. Simultaneously, it could effectively improve the photosynthetic capacity of grafted offspring leaves at the seedling stage. The grafted offspring of rootstocks had the best effect on improving the net photosynthetic rate, stomatal conductance and transpiration rate and stomatal conductance of tomato leaves, and decreased intercellular CO2 concentration. Among them, the best effect of yellow rootstock was to provide ideas and theoretical basis for the production of selenium-enriched tomatoes in the selenium-deficient areas in the future.


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 640-647 ◽  
Author(s):  
Duli Zhao ◽  
Neil C. Glynn ◽  
Barry Glaz ◽  
Jack C. Comstock ◽  
Sushma Sood

Orange rust of sugarcane (Saccharum spp. hybrids), caused by Puccinia kuehnii, is a relatively new disease in the Western Hemisphere that substantially reduces yields in susceptible sugarcane genotypes. The objective of this study was to determine the physiological mechanisms of orange rust–induced reductions in sugarcane growth and yield by quantifying effects of the disease on leaf SPAD index (an indication of leaf chlorophyll content), net photosynthetic rate, dark respiration, maximum quantum yield of CO2 assimilation, carbon fixation efficiency, and the relationships between these leaf photosynthetic components and rust disease ratings. Plants growing in pots were inoculated with the orange rust pathogen using a leaf whorl inoculation method. A disease rating was assigned using a scale from 0 to 4 with intervals of 0.5. At disease ratings ≥2, the rust-infected leaf portion of inoculated plants showed significant reductions in SPAD index, maximum quantum yield, carbon fixation efficiency, stomatal conductance, leaf transpiration rate, and net photosynthetic rate; but the rusted portion of the infected leaves had increased intercellular CO2 concentration and leaf dark respiration rate. Although leaf SPAD index, photosynthetic rate, stomatal conductance, and transpiration rate at the rust-infected portion decreased linearly with increased rust rating, the effect of orange rust on photosynthetic rate was much greater than that on stomatal conductance and transpiration. Unlike earlier reports on other crops, reduction in leaf photosynthesis by orange rust under low light was greater than that under high light conditions. These results help improve the understanding of orange rust etiology and physiological bases of sugarcane yield loss caused by orange rust.


2012 ◽  
Vol 550-553 ◽  
pp. 2365-2368
Author(s):  
Xiang Ming Chen

Using six kinds of concentration (ranged from 0.0 to 2.0mg.L-1) of flavone extract from C.cathayensis exocarp treats corn, soybean, wheat and mung bean seedlings, in order to study the photosynthetic rate, stomatal conductance, transpiration rate, intercellular CO2 on the seedling leaf. Results show that effects of flavone extract (0.1-0.5mg.L-1) increase content of the chlorophyll a, b and total chlorophyll, promote photosynthetic rate, stomatal conductance, transpiration rate, proper increase cell gap inside the CO2 concentration.0.1mg.L-1 treatment effect is the most obvious compare with the control, the total chlorophyll and photosynthetic rate increase by 20.9 % and 21% respectively; More than 0.5mg.L-1, the chlorophyll content, photosynthetic rate, stomatal conductance, transpiration rate decrease, the intercellular CO2 rapid increase. Research shows that, the appropriate concentration of flavone can increase the chlorophyll content in the leaf, promote stomatal opening, increase of intracellular CO2 supply, improve leaf photosynthesis efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Juan Qi ◽  
Wenhui Liu ◽  
Ting Jiao ◽  
Ann Hamblin

The availability of suitable native plant species for local animal husbandry development and ecological restoration is limited on the Qinghai-Tibetan Plateau. Therefore, comparisons of the ecological adaptability of native species to alternative habitats and their introduction into new habitats are of high importance. This study is aimed at identifying the alteration in morphological and physiological characteristics by measuring photosynthetic physiology, nutrient content, and growth associated with adaptation of plants to conditions at different altitudes 2450, 2950, 3100, and 3300 m above sea level (a. s. l.) on the plateau. Seeds of the dominant grass, Elymus nutans, were collected from locations at these altitudes and grown at a test location of 2950 m a. s. l. Results indicated that altitude had no significant effect on plant height and root depth. However, the leaf area and total root surface area of plants derived from 2950 and 3300 m a. s. l. showed a parabolic response, being greater than those of plants derived from the lowest (2450 m) and highest (3300 m a. s. l.). Total (root plus shoot) dry matter reduced progressively from 2450 to 3300 m a. s. l, while root : shoot ratio increased progressively with altitude. Seed yield of plants originating from the test altitude (2950 m a. s. l) was significantly higher than at any other altitude, being 20% lower at 2450 m, and 38% and 58% less in populations originating from the higher altitudes (3100 and 3300 m a. s. l.). There was also a parabolic decline in response of Elymus nutans germplasm from 3100, 3300, and 2450 m, compared with plants from 2950 m a. s. l., to photosynthetic rate, total N, soluble sugar, and starch contents. Germplasm from 2450 m a. s. l. had significantly lower shoot and higher root carbon content, lower shoot nitrogen, and lower root carbon-to-nitrogen ratio compared with plants derived from the other three altitudes. It is suggested that the stable, genetically determined morphological and physiological features of ecotypes showed parabolic responses which means these ecotypes have become adapted to local habitats, whereas parameters such as dry matter, total root : shoot ratio, photosynthetic rate, and intercellular CO2 concentration of plants reflected phenotypic linear response to current abiotic conditions. It is postulated that introduced ecotypes from 2450, 3100, and 3300 m could adapt to the environment at 2950 m a. s. l. gradually. We conclude that the increased thermal regime experienced by plants introduced from high altitude to low altitude may facilitate the increased growth of Elymus nutans subtypes. It is important to preserve local strains of native species, or ecotypes, for reintroduction into degraded environments and to maintain the greatest ecosystem stability in the northeastern Tibetan Plateau.


2002 ◽  
Vol 20 (2) ◽  
pp. 127-132
Author(s):  
Edward F. Gilman ◽  
Ann Stodola ◽  
Michael D. Marshall

Abstract Cutting propagated Quercus virginiana ‘QVTIA’ Highrise™ PP #11219 and seedling live oak required the same amount of time to prune to a dominant leader in the nursery. Highrise™ live oaks were more uniform in caliper, height and root ball characteristics than the seedling crop. Finished seedling trees had larger caliper than cutting propagated Highrise™ but height was similar. Root pruning horizontal roots alone or in combination with placing root pruning fabric under the liner at planting reduced dry weight of roots in the root ball by reducing large-diameter root weight and increasing small-diameter root weight. Trees produced by both methods of root pruning survived the digging process better than non root-pruned trees in the summer digging season. Seedlings had more root weight in the root ball and a higher root: shoot ratio than Highrise™ live oak. But Highrise™ had a 45% greater small diameter root: shoot ratio than seedling live oak, and more Highrise™ survived the digging process than seedlings. Highrise™ may not need root pruning during production if dug in the dormant season.


Sign in / Sign up

Export Citation Format

Share Document