scholarly journals SERINE PROTEINASE IN ARTICULAR CARTILAGE, SUBCHONDRAL BONE MARROW AND SYNOVIAL FLUID IN HUMAN OSTEOARTHRITIS AND RHEUMATOID ARTHRITIS

1995 ◽  
Vol 16 (1) ◽  
pp. 11-20 ◽  
Author(s):  
TOMOYUKI NAKAGAWA ◽  
SHIGEKI MOMOHARA ◽  
KYOSUKE FUJITA ◽  
TAKAO KODAMA ◽  
HARUMOTO YAMADA ◽  
...  
2019 ◽  
Vol 4 (6) ◽  
pp. 221-229 ◽  
Author(s):  
Simon Donell

Subchondral bone remodelling is an integral part of osteoarthritis and involves the development of subchondral sclerosis seen on plain imaging, along with osteophyte formation. The development of these changes is due to persistent abnormal mechanical stresses which create a cellular and biomolecular response to microfractures in the subchondral bone and osteochondral junction. An early sign is bone marrow lesions seen on MRI scanning. Healing can occur at this stage by correcting the abnormal loads. Persistence leads to what is thought to be a delayed union or nonunion response by the bone. Microfractures of the osteochondral junction, coupled with articular cartilage fissuring and loss, allows synovial fluid to penetrate the subchondral bone along with cytokines and other molecules reacting with the bone cells to increase the pathological effects. This review gives an overview of the current thoughts on subchondral bone remodelling in osteoarthritis that is aimed at orthopaedic surgeons to help in the understanding of the pathogenesis of osteoarthritis and the role of surgical management. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180102


Radiology ◽  
2006 ◽  
Vol 238 (3) ◽  
pp. 943-949 ◽  
Author(s):  
Richard Kijowski ◽  
Paul Stanton ◽  
Jason Fine ◽  
Arthur De Smet

2020 ◽  
Author(s):  
Zelong Dou ◽  
Daniel Muder ◽  
Marta Baroncelli ◽  
Ameya Bendre ◽  
Alexandra Gkourogianni ◽  
...  

AbstractReconstruction of articular surfaces destroyed by infection or trauma is hampered by the lack of suitable graft tissues. Perichondrium autotransplants have been used for this purpose. However, the role of the transplanted perichondrium in the healing of resurfaced joints have not been investigated. Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. Transplanted cells and their progenies were readily detected in the defects of perichondrium and periosteum transplanted animals but not in defects left without a transplant. Perichondrium transplants expressed SOX9 and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive chondrocytes and a matrix rich in proteoglycans. Interestingly, at later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. In addition, both perichondrium and periosteum transplants contributed cells to the subchondral bone and bone marrow, suggesting differentiation into osteoblast/osteocytes as well as bone marrow cells. In summary, we found that perichondrium transplanted to articular cartilage defects develops into an articular-like, hyaline cartilage that integrates with the subchondral bone, and is maintained for an extended time. The findings indicate that perichondrium is a suitable tissue for repair and engineering of articular cartilage.


Cartilage ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Dexter Seow ◽  
Youichi Yasui ◽  
Ian D. Hutchinson ◽  
Eoghan T. Hurley ◽  
Yoshiharu Shimozono ◽  
...  

Objective Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. Design The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). Results Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. Conclusions Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.


2018 ◽  
Vol 10 (5) ◽  
pp. 412-418 ◽  
Author(s):  
Bryan M. Saltzman ◽  
Jonathan C. Riboh

Context: Articular cartilage injuries and early osteoarthritis are among the most common conditions seen by sports medicine physicians. Nonetheless, treatment options for articular degeneration are limited once the osteoarthritic cascade has started. Intense research is focused on the use of biologics, cartilage regeneration, and transplantation to help maintain and improve cartilage health. An underappreciated component of joint health is the subchondral bone. Evidence Acquisition: A comprehensive, nonsystematic review of the published literature was completed via a PubMed/MEDLINE search of the keywords “subchondral” AND “bone” from database inception through December 1, 2016. Study Design: Clinical review. Level of Evidence: Level 4. Methods: Articles collected via the database search were assessed for the association of bone marrow lesions and osteoarthritis, cartilage regeneration, and ligamentous and meniscal injury; the clinical disorder known as painful bone marrow edema syndrome; and the subchondral bone as a target for medical and surgical intervention. Results: A complex interplay exists between the articular cartilage of the knee and its underlying subchondral bone. The role of subchondral bone in the knee is intimately related to the outcomes from cartilage restoration procedures, ligamentous injury, meniscal pathology, and osteoarthritis. However, subchondral bone is often neglected when it should be viewed as a critical element of the osteochondral unit and a key player in joint health. Conclusion: Continued explorations into the intricacies of subchondral bone marrow abnormalities and implications for the advent of procedures such as subchondroplasty will inform further research efforts on how interventions aimed at the subchondral bone may provide durable options for knee joint preservation.


Author(s):  
Qinglin Meng ◽  
Mengqi Liu ◽  
Weiwei Deng ◽  
Ke Chen ◽  
Botao Wang ◽  
...  

Background: Calcium-suppressed (CaSupp) technique involving spectral-based images has been used to observe bone marrow edema by removing calcium components from the image. Objective: This study aimed to evaluate the knee articular cartilage using the CaSupp technique in dual-layer detector computed tomography (DLCT). Methods: Twenty-eight healthy participants and two patients with osteoarthritis were enrolled, who underwent DLCT and magnetic resonance imaging (MRI) examination. CaSupp images were reconstructed from spectral-based images using a calcium suppression algorithm and were overlaid conventional CT images for visual evaluation. The morphology of the knee cartilage was evaluated, and the thickness of the articular cartilage was measured on sagittal proton density– weighted and CaSupp images in the patellofemoral compartment. Results: No abnormal signal or density, cartilage defect, and subjacent bone ulceration were observed in the lateral and medial femorotibial compartments and the patellofemoral compartment on MRI images and CaSupp images for the 48 normal knee joints. CaSupp images could clearly identify cartilage thinning, defect, subjacent bone marrow edema, and edema of the infrapatellar fat pad in the same way as MRI images in the three knee joints with osteoarthritis. A significant difference was found in the mean thickness of the patellar cartilage between MRI images and CaSupp images, while the femoral cartilage presented no significant difference in thickness between MRI images and CaSupp images over all 48 knee joints. Conclusion: The present study demonstrated that CaSupp images could effectively be used to perform the visual and quantitative assessment of knee cartilage.


Sign in / Sign up

Export Citation Format

Share Document