Faculty Opinions recommendation of [CONFERENCE POSTER]: Transcriptomic analysis of in vitro postnatal maturation in articular cartilage: evidence for subchondral bone-cartilage crosstalk.

Author(s):  
Ivan Martin ◽  
Celeste Scotti
2012 ◽  
Vol 39 (3) ◽  
pp. 621-634 ◽  
Author(s):  
INDIRA PRASADAM ◽  
ROSS CRAWFORD ◽  
YIN XIAO

Objective.Degradative enzymes, such as A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix metalloproteinases (MMP), play key roles in development of osteoarthritis (OA). We investigated if crosstalk between subchondral bone osteoblasts (SBO) and articular cartilage chondrocytes (ACC) in OA alters the expression and regulation of ADAMTS5, ADAMTS4, MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and MMP-13, and also tested the possible involvement of mitogen-activated protein kinase (MAPK) signaling pathway during this process.Methods.ACC and SBO were isolated from normal and OA patients. An in vitro coculture model was developed to study the regulation of ADAMTS and MMP under normal and OA joint crosstalk conditions. The MAPK-ERK inhibitor PD98059 was applied to delineate the involvement of specific pathways during this interaction process.Results.Indirect coculture of OA SBO with normal ACC resulted in significantly increased expression of ADAMTS5, ADAMTS4, MMP-2, MMP-3, and MMP-9 in ACC, whereas coculture of OA ACC led to increased MMP-1 and MMP-2 expression in normal SBO. Upregulation of ADAMTS and MMP under these conditions was correlated with activation of the MAPK-ERK1/2 signaling pathway, and addition of the MAPK-ERK inhibitor PD98059 reversed the overexpression of ADAMTS and MMP in cocultures.Conclusion.These results add to the evidence that in human OA, altered bidirectional signals between SBO and ACC significantly influence the critical features of both cartilage and bone by producing abnormal levels of ADAMTS and MMP. We have demonstrated for the first time that this altered crosstalk was mediated by the phosphorylation of MAPK-ERK1/2 signaling pathway.


Cartilage ◽  
2020 ◽  
pp. 194760352095162
Author(s):  
Yang Huang ◽  
Cheng Chen ◽  
Fuyou Wang ◽  
Guangxin Chen ◽  
Shidi Cheng ◽  
...  

Objective To establish a method for investigating the permeability of calcified cartilage zone (CCZ) and to observe solute transport between articular cartilage (AC) and subchondral bone (SB) through intact CCZ in vivo. Design We developed a novel fixing device combined with un-decalcified fluorescence observation method to address the permeability of CCZ in live mice. Twenty-four Balb/c female mice aged 1 to 8 months were used to observe the development of CCZ. Eighty-four Balb/c female mice (aged 1 or 6 months) with mature or immature CCZ of distal femur were used to investigate the permeability of intact CCZ in vivo. Diffusivity of rhodamine B (476 Da) and tetramethyl-rhodamine isothicyanate-dextran (TRITC-Dextran, 20 kDa) was tested from AC to SB in 0 minutes, 1 minute, 15 minutes, 30 minutes, 1 hour, and 2 hours. None diffused knee joints (0 minutes) served as blank control, while in vitro immersion of distal femurs in rhodamine B or TRITC-Dextran for 72 hours served as positive control. Results CCZ was well developed in 6-month mice. Both tracers penetrated immature CCZ down to SB in less than 1 hour in live mice, while the diffusion of both tracers decreased rapidly at tidemark in all testing time points. Conclusion Current study provided direct evidence of blocking effect of CCZ in solute transportation during short diffusion period in live animal, indicating the important role of CCZ in joint development and microenvironment maintenance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wang Yajun ◽  
Cui Jin ◽  
Gu Zhengrong ◽  
Fang Chao ◽  
Hu Yan ◽  
...  

Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7118
Author(s):  
Ermina Hadzic ◽  
Garth Blackler ◽  
Holly Dupuis ◽  
Stephen James Renaud ◽  
Christopher Thomas Appleton ◽  
...  

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease, leading to articular cartilage breakdown, osteophyte formation, and synovitis, caused by an initial joint trauma. Pro-inflammatory cytokines increase catabolic activity and may perpetuate inflammation following joint trauma. Interleukin-15 (IL-15), a pro-inflammatory cytokine, is increased in OA patients, although its roles in PTOA pathophysiology are not well characterized. Here, we utilized Il15 deficient rats to examine the role of IL-15 in PTOA pathogenesis in an injury-induced model. OA was surgically induced in Il15 deficient Holtzman Sprague-Dawley rats and control wild-type rats to compare PTOA progression. Semi-quantitative scoring of the articular cartilage, subchondral bone, osteophyte size, and synovium was performed by two blinded observers. There was no significant difference between Il15 deficient rats and wild-type rats following PTOA-induction across articular cartilage damage, subchondral bone damage, and osteophyte scoring. Similarly, synovitis scoring across six parameters found no significant difference between genetic variants. Overall, IL-15 does not appear to play a key role in the development of structural changes in this surgically-induced rat model of PTOA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alyssa Maxwell ◽  
Iris Adam ◽  
Pernille S. Larsen ◽  
Peter G. Sørensen ◽  
Coen P. H. Elemans

AbstractVocal behavior can be dramatically changed by both neural circuit development and postnatal maturation of the body. During song learning in songbirds, both the song system and syringeal muscles are functionally changing, but it is unknown if maturation of sound generators within the syrinx contributes to vocal development. Here we densely sample the respiratory pressure control space of the zebra finch syrinx in vitro. We show that the syrinx produces sound very efficiently and that key acoustic parameters, minimal fundamental frequency, entropy and source level, do not change over development in both sexes. Thus, our data suggest that the observed acoustic changes in vocal development must be attributed to changes in the motor control pathway, from song system circuitry to muscle force, and not by material property changes in the avian analog of the vocal folds. We propose that in songbirds, muscle use and training driven by the sexually dimorphic song system are the crucial drivers that lead to sexual dimorphism of the syringeal skeleton and musculature. The size and properties of the instrument are thus not changing, while its player is.


Sign in / Sign up

Export Citation Format

Share Document