scholarly journals Simulation of a parallel mechanical elbow with 3 DOF

Author(s):  
J. R. Mendoza-Vázquez ◽  
E. Tlelo-Cuautle ◽  
J.L. Vázquez-Gonzalez ◽  
A. Z. Escudero-Uribe

The kinematics simulation and modeling of a mechanical elbow of 3 degrees of freedom, is introduced by highlighting the main features of the mechanism related to the design criteria. The mechanical elbow is used as a transhumeral prosthetic part, and it has been built as a parallel topology consisting of electric linear actuators and universal joints. The parallel mechanism has 4 legs. 3 are electric linear actuators, and the fourth leg provides mechanical support for the whole structure and holds a DC Motor that performs the action of gripping objects. Furthermore, this paper shows the inverse kinematics for the elbow by geometric methods, and the MatLab‐simulation results show the workspace of the movement and the ability of the mechanical elbow to replicate the movements of a biological one.

2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohammad Afif Ayob ◽  
Wan Nurshazwani Wan Zakaria ◽  
Jamaludin Jalani ◽  
Mohd Razali Md Tomari

This paper presents the reliability and accuracy of the developed model of 5-axis Mitsubishi RV-2AJ robot arm. The CAD model of the robot was developed by using SolidWorks while the multi-body simulation environment was demonstrated by using SimMechanics toolbox in MATLAB. The forward and inverse kinematics simulation results proposed that the established model resembles the real robot with accuracy of 98.99%. 


2015 ◽  
Vol 741 ◽  
pp. 687-690
Author(s):  
Lu Xi Chen ◽  
Zhan Xian Li ◽  
Zhi Jun Wang

Shift manipulator requires the transmission shift lever end Chinese characters ‘Wang’ motion, this paper proposes a kind of 2-Dof asymmetric spherical parallel mechanism to realize the movement. The structure characteristic and the trajectory of the manipulator are described. The position inverse solution of the 2-Dof spherical parallel mechanism is obtained by inverse kinematics analysis. Inverse kinematics simulation of the parallel mechanism is proposed finally.


Author(s):  
Hanwei Liu ◽  
Cle´ment Gosselin ◽  
Thierry Laliberte´

A novel architecture of planar spring-loaded cable-loop-driven parallel mechanism is introduced in this paper. By attaching springs to the cable loops, two degrees of freedom can be controlled using only two actuators. In this mechanism, spools are eliminated. Therefore, it is expected that the accuracy of this mechanism is improved compared with conventional cable-driven mechanisms making use of spools. The mechanism can be actuated using either linear sliders or rotary actuators driving the motion of a cable or belt. This paper presents the inverse kinematics and the static equilibrium equations for the new architecture. It is verified that the cables and the springs can be kept in tension within the workspace. Results of numerical simulations are also given.


2014 ◽  
Vol 940 ◽  
pp. 153-158
Author(s):  
Run Xin Qu ◽  
Yuan Yuan Zou ◽  
Xiao Wei An ◽  
Si Jun Zhu

Giant structure processes involve highly dangerous manual welding operations. aiming at the welding for giant structures, tankers and other large work pieces, a five degrees of freedom (DOF) gantry type automatic welding robot was developed which has our own property right. Forward/inverse kinematics for the mechanical structure is analyzed in which pose of the welding torch is defined as a free vector. Then kinematics equations were proposed for torch pose fitting. Finally, simulation results for robot kinematics analysis and torch pose fitting were also proposed with Matlab. The result not only proves the feasibility of torch pose fitting, but also provides a basis for further study on kinematic analysis, torch pose fitting and off-line programming about gantry type automatic welding robot.


2015 ◽  
Vol 780 ◽  
pp. 49-54
Author(s):  
Shao Gang Liu ◽  
Edris Farah

Robotic arm with six degrees of freedom can be successfully used to do a surgical task through a small incision called (RCM point) on the patient's body. Inverse Kinematics modeling and simulating of a 6 DOF surgical robot is developed in this paper. The mathematical model equations are built using geometric approach and the Denavit-Hartenberg convention. The 3D model of the robot is created by CATIA5 to simulate the motion of the robot in surgical environments. The inverse kinematics equations model is validated through the simulating model. Result confirms that the proposed robot mechanism is applicable for minimally invasive surgery applications.


2015 ◽  
Vol 762 ◽  
pp. 305-311
Author(s):  
Mihai Crenganis ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


2021 ◽  
Vol 33 (1) ◽  
pp. 141-150
Author(s):  
Takashi Kei Saito ◽  
Kento Onodera ◽  
Riku Seino ◽  
Takashi Okawa ◽  
Yasushi Saito ◽  
...  

We designed a new telescopic manipulator that uses a clustered elastic convex tape. The manipulator has an ultra-wide expansion range and toughness against mechanical stress. Compared to conventional linear actuators, our convex-type manipulators have high extension range and are very lightweight. Moreover, they are compact when rolled up. The telescopic manipulators designed in the previous study had insufficient output due to structural problems and were unstable. In this study, we report a Type-K telescopic manipulator mechanism (Makijaku-Ude Type-K), which is a redesigned manipulator that can be easily used with a 300-N class power, and applied the mechanism to a three degrees-of-freedom spatial parallel-mechanism robot.


2014 ◽  
Vol 657 ◽  
pp. 823-828
Author(s):  
Mihai Crenganis ◽  
Radu Eugen Breaz ◽  
Sever Gabriel Racz ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, ANFIS implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


2014 ◽  
Vol 19 (1) ◽  
pp. 5-15 ◽  
Author(s):  
J. Bałchanowski

Abstract The paper presents elements of the topology, geometry and the kinematic analysis of a translational parallel mechanism with three degrees of freedom. In such mechanisms the selection of a proper structure and geometry ensures that the driven link maintains a fixed orientation relative to the base. The method of determination of the configuration of mechanisms using contour vector notation was elaborated in the paper. The equations for the analysis of the direct and inverse kinematics task are determined. An analytical procedure for determining the system’s singular positions is presented and illustrated with examples


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Louis-Thomas Schreiber ◽  
Clément Gosselin

This paper presents methods to exploit the redundancy of a kinematically redundant spatial parallel mechanism with three redundant DOFs. The architecture of the mechanism is similar to the well-known Gough–Stewart (GS) platform and it retains its advantages, i.e., the members connecting the base to the moving platform are only subjected to tensile/compressive loads. The kinematic redundancy is exploited to avoid singularities and extend the rotational workspace. The architecture is described and the associated kinematic relationships are presented. Solutions for the inverse kinematics are given, as well as strategies to take into account the limitations of the mechanism such as mechanical interferences and velocity limits of the actuators while controlling the redundant degrees-of-freedom.


Sign in / Sign up

Export Citation Format

Share Document