scholarly journals Energy and Second Law Analysis of Shower Cooling Tower Used for Air Cooling Application for Human Comfort with Variation in Water to Air Mass Flow Ratio

Author(s):  
Mohammad Zunaid
2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775257
Author(s):  
Qing Jie Kong ◽  
Xue Yi Zhao ◽  
De Qiang Xie ◽  
Ben Zhang ◽  
Pei Wang

This article deals with an experimental investigation of coinstantaneous heat and mass transfer phenomena between water and air in a counterflow wet cooling tower filled with a new type packing named “FCP-08.” The packing consisted of foamed ceramic corrugated board with sine waves, surface retention groove is 1.0 m high, and it has a cross-sectional test area of 0.68 m × 0.68 m. This investigation is focused mainly on the effect of the water–air mass flow ratio on the heat and mass transfer characteristics of the cooling tower, for different inlet water temperatures. The results show that the cooling water range, [Formula: see text], and the cooling tower efficiency, [Formula: see text], decrease with the increase in water–air mass flow ratio, [Formula: see text]. Meanwhile, the heat rejected by the cooling tower, [Formula: see text], increases with the increase in the water mass flow rate. The cooling characteristic coefficient, [Formula: see text], slightly decreases with the increase in water–air mass flow ratio and the value is obviously higher than that of other packing investigated before. The relationship between the cooling characteristic coefficient and water–air mass flow ratio is obtained by linear fitting. The comparison between the obtained results and those found in the literature for other types of packing indicates that cooling performance of the tower with foam ceramic packing is better.


Author(s):  
Mitsumasa Makida ◽  
Hideshi Yamada ◽  
Yoji Kurosawa ◽  
Takeshi Yamamoto ◽  
Kazuaki Matsuura ◽  
...  

A series of experimental researches, including ignition and combustion tests at atmospheric pressure conditions, were conducted to develop a combustor for a small class aircraft engine (with pressure ratio about 20). Under restrictions of the combustor size and cost, in order to satisfy the requirement for ignition and blowout performance with sufficient combustion efficiency and NOx reduction for wide range of operating conditions, we applied single fuel nozzles and utilized the rich-burn-quick quench-lean-burn (RQL) combustion approach. Preliminary combustion tests were conducted to optimize the ignition and blowout characteristics, approximately determining positions of air holes and igniter, and selecting fuel nozzle parameters. Consequently, tubular combustor tests with exhaust gas analysis were also conducted to optimize the air mass flow ratio and the air holes’ positions to suppress NOx emissions. Obtained results showing the RQL characteristics of the combustion, decreasing NOx emissions at high equivalence ratio range, are presented in this report, and the optimized air mass flow ratio and position of air holes, which will be applied to a single sector combustor for the testing at practical pressure and temperature conditions, are also presented.


Author(s):  
Liu Dian-Kui ◽  
Ji Le-Jian

The flow within a centrifugal rotor has strong characteristics of three-dimensional effect. A procedure called “stream-surface coordinates iteration” for the calculation of complete three dimensional flow in turbo-machinery is first described. Splitter blade techniques have been used in many rotors, especially in centrifugal compressors and pumps with high flow capacity. The difficulty of the calculation of the flow field for this type of rotor lies on that the mass flow ratio between the two sub-channels is unknown for the given total flow capacity. In the second part of this paper, an assumption about how to determine this mass flow ratio and a procedure to calculate the complete three-dimensional flow are presented. Finally, some design criteria about the splitter blades are put forward. Experimental data from two centrifugal pump impellers equipped with different splitter blades are also given to demonstrate the availability of the present calculation method.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Chao Zhou ◽  
Howard Hodson

Experimental, analytical, and numerical methods have been employed to study the aerodynamic performance of four different cooled tips with coolant mass ratios between 0% and 1.2% at three tip gaps of 1%, 1.6%, and 2.2% of the chord. The four cooled tips are two flat tips with different coolant holes, a cooled suction side squealer tip and a cooled cavity tip. Each tip has ten coolant holes with the same diameter. The uncooled cavity tip produces the smallest loss among all uncooled tips. On the cooled flat tip, the coolant is injected normally into the tip gap and mixes directly with flow inside the tip gap. The momentum exchange between the coolant and the flow that enters the tip gap creates significant blockage. As the coolant mass flow ratio increases, the tip leakage loss of the cooled flat tip first decreases and then increases. For the cooled cavity tip, the blockage effect of the coolant is not as big as that on the cooled flat tip. This is because after the coolant exits the coolant holes, it mixes with flow in the cavity first and then mixes with tip flow in the tip gap. The tip leakage loss of the cooled cavity tip increases as the coolant mass flow ratio increase. As a result, at a tip gap of 1.6% of the chord, the cooled cavity tip gives the lowest loss. At the smallest tip gap of 1% of the chord, the cooled flat tip produces less loss than the cooled cavity tip when the coolant mass flow ratios larger than 0.23%. This is because with the same coolant mass flow ratio, a proportionally larger blockage is created at the smallest tip gap. At the largest tip gap of 2.2% of the chord, the cavity tip achieves the best aerodynamic performance. This is because the effect of the coolant is reduced and the benefits of the cavity tip geometry dominate. At a coolant mass flow ratio of 0.55%, the cooled flat tips produce a lower loss than the cavity tip at tip gaps less than 1.3% of the chord. The cooled cavity tip produces the least loss for tip gaps larger than 1.3% of the chord. The cooled suction side squealer has the worst aerodynamic performance for all tip gaps studied.


2013 ◽  
Vol 25 (7) ◽  
pp. 1715-1718 ◽  
Author(s):  
王殿恺 Wang Diankai ◽  
洪延姬 Hong Yanji ◽  
李倩 Li Qian

Author(s):  
Pipatpong Watanawanyoo ◽  
Hirofumi Mochida ◽  
Hiroyuki Hirahara ◽  
Sumpun Chaitep

Air assisted atomizer system was designed and developed for fuel injection. The present purpose is to utilize a low pressure in supplying of atomized fuel. Distilled water was used as test liquid on the experiments for the system of atomization. The results revealed air assisted atomizer had a capability to inject the test liquid in the range of the rates of 0.0019–0.00426 kg/s, with the use of air pressure supplied from 68.9 to 689 kPa. In this research, the test liquid supply pressure was kept constant and the air flow rate through the atomizer was varied over a range of air supply pressure to obtain the variation in air liquid mass flow ratio (ALR). The spray solidity was studied by taking pictures of the spray at different liquid air supply pressures. The experimental investigations suggest that spray cone angle tends to increase with increasing in air liquid mass flow ratio because the kinetic energy of the flow keeps on increasing. The solid cone spray has a pattern of penetration depth between 408–446 mm. and cone angle between 14.5–23.6°. It was observed that spray formed the solid cone at all the operating conditions.


Author(s):  
Zhiqiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An

Abstract Numerical investigations have been performed to study the effect of incidence angle on the aerodynamic and film cooling performance for the suction surface squealer tip with different film-hole arrangements at τ = 1.5% and BR = 1.0. Meanwhile, the full squealer tip as baseline is also investigated. Three incidence angles at design condition (0 deg) and off-design conditions (± 7 deg) are investigated. The suction surface, pressure surface, and the camber line have seven holes each, with an extra hole right at the leading edge. The Mach number at the cascade inlet and outlet are 0.24 and 0.52, respectively. The results show that the incidence angle has a significant effect on the tip leakage flow characteristics and coolant flow direction. The film cooling effectiveness distribution is altered, especially for the film holes near the leading edge. When the incidence angle changes from +7 deg to 0 and −7 deg, the ‘re-attachment line’ moves downstream and the total tip leakage mass flow ratio decreases, but the suction surface tip leakage mass flow ratio near leading edge increases. In general, the total tip leakage mass flow ratio for suction surface squealer tip is 1% greater than that for full squealer tip at the same incidence angle. The total pressure loss coefficient of suction surface squealer tip is larger than that for full squealer tip. The full squealer tip with film holes near suction surface and the suction surface squealer tip with film hole along camber line show high film cooling performance, and the area averaged film cooling effectiveness at positive incidence angle +7 deg is higher than that at 0 and −7 deg. The coolant discharged from film holes near pressure surface only cools narrow region near pressure surface.


Sign in / Sign up

Export Citation Format

Share Document