scholarly journals Synthesis, Characterization and Biological Activity of Some Cobalt Metal Complexes Obtained from Novel Hydrazones

Author(s):  
Nilesh B. Jadhav
Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2288
Author(s):  
Ahmed Gaber ◽  
Moamen S. Refat ◽  
Arafa A.M. Belal ◽  
Ibrahim M. El-Deen ◽  
Nader Hassan ◽  
...  

Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.


2021 ◽  
Vol 330 ◽  
pp. 115522
Author(s):  
Ola A. El-Gammal ◽  
Farid Sh. Mohamed ◽  
Ghada N. Rezk ◽  
Ashraf A. El-Bindary

1990 ◽  
Vol 14 (1) ◽  
pp. 61-70 ◽  
Author(s):  
V.A. Lee ◽  
R.I. Musin ◽  
R.I. Tashmukhamedov ◽  
M.I. Shtilman ◽  
S.Sh. Rashidova

2018 ◽  
Vol 48 ◽  
pp. 141-148 ◽  
Author(s):  
Marzena Matejczyk ◽  
Grzegorz Świderski ◽  
Renata Świsłocka ◽  
Stanisław Józef Rosochacki ◽  
Włodzimierz Lewandowski

Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 154 ◽  
Author(s):  
Agata Jabłońska-Trypuć ◽  
Urszula Wydro ◽  
Elżbieta Wołejko ◽  
Grzegorz Świderski ◽  
Włodzimierz Lewandowski

Cichoric acid (CA) belongs to the group of polyphenols, which occurs in a variety of plant species and it is characterized by anticancer, antibacterial, and antiviral properties. Selected polyphenols have the ability to combine with metal ions to form chelate complexes that reveal greater biological activity than free compounds. In order to study possible antimicrobial and anticancer effect of CA and its complexes with copper(II)/zinc(II)/nickel(II)/cobalt(II) we decided to conduct cytotoxicity tests to estimate the most effective concentrations of tested compounds. The results of the presented study demonstrated, for the first time, that the treatment with newly synthesized CA-metal complexes has anticancer and antimicrobial effects, which were examined in seven different cell lines: MCF-7, MDA-MB-231, and ZR-75-1 breast cancer cell lines, A375 melanoma cell line, DLD-1 cell line, LN-229 cell line, FN cell line; five bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Proteus vulgaris, Lactobacillus rhamnosus, yeast Sacchcaromyces boulardii, and pathogenic yeast-like fungi Candida albicans. The presented study indicates that CA-metal complexes could be considered as a potential supplementary tool in anticancer therapy, however, because of their possible toxic activity on fibroblasts, they should be used with caution. Some of the tested complexes have also preservative properties and positive influence on normal non-pathogenic microorganisms, which was demonstrated in selected microbial strains, therefore they may serve as food preservatives of natural origin with cytoprotective properties.


Sign in / Sign up

Export Citation Format

Share Document