scholarly journals Brain Tumor Segmentation using Image Processing

Author(s):  
Ashish Nambiar

This paper presents brain tumor detection and segmentation using image processing techniques. Convolutional neural networks can be applied for medical research in brain tumor analysis. The tumor in the MRI scans is segmented using the K-means clustering algorithm which is applied of every scan and the feed it to the convolutional neural network for training and testing. In our CNN we propose to use ReLU and Sigmoid activation functions to determine our end result. The training is done only using the CPU power and no GPU is used. The research is done in two phases, image processing and applying neural network.


2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Samir Kumar Bandyopadhyay

Computer aided technology is used in biomedical image processing. In biomedical analysis features are extracted and then the proposed method will detect any abnormalities present or not in the system to be considered. In recent days the detection of brain tumour through image processing is made in medical diagnosis. The separation of tumor is made by the process of segmentation. Brain in human is the most complicated and delicate anatomical structure. There are various brain ailments in human but the indication of cancer in brain tumour may be fatal for the human. Brain tumor can be malignant or benign. The neurologist or neurosurgeon wants to know the exact location, size, shape and texture of tumor from Magnetic Resonance Imaging (MRI) of brain before going to the operation of the brain tumour or decided whether operation of removing brain tumour is at all necessary or not. The disease is analyzed since operation may cause death to the patient. Initially they took a chance by prescribing medicines to see whether there is any improvement of the condition of the patient. If the result is not satisfactory then there is no option other than operation of the tumor. Doctors also take an attempt to find the texture of the tumor since it may help them to know the progress of the tumour. In addition to Brain tumor segmentation, the detection of surface of the texture of brain tumor is required for proper treatment. The chapter proposed methods for detection of the progressive nature of the texture in the tumor presence in brain. For this process segmentation of tumor from other parts of brain is essential. In the chapter segmentation techniques are presented before the texture analysis process is given. Finally, comparisons of the proposed method with other methods are analyzed.


2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


2018 ◽  
Vol 24 (1) ◽  
pp. 43-53
Author(s):  
Behrouz Alizadeh Savareh ◽  
Hassan Emami ◽  
Mohamadreza Hajiabadi ◽  
Mahyar Ghafoori ◽  
Seyed Majid Azimi

Abstract Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2017 ◽  
Vol 16 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Tianming Zhan ◽  
Yi Chen ◽  
Xunning Hong ◽  
Zhenyu Lu ◽  
Yunjie Chen

Sign in / Sign up

Export Citation Format

Share Document