scholarly journals Transfer of Secret Data using Re-encryption Technique with Hyperledger Fabric based on Blockchain Technology

Author(s):  
Bhagyashri H. Adhau

The Personal health record system (PHR system) which stores health-records patient's information. PHR system allows the one Hospital to manage and share his/her data with selected other individuals. The originality or tamper resistance feature is crucial for PHR system because it contains sensitive information about patients. Blockchain technology with the personal blockchain becomes a potential, great solution due to its immutability properties. Unfortunately. This work aims to propose a blockchain-based PHR model. The proposed model is built using the Hyper-ledger Fabric concept to support a tamper resistance feature. Re-encryption and other cryptographic techniques Such as Advanced Encryption Standard and Hashing algorithms are employed to preserve privacy. The proposed model include flexible access control, security concerns, auditability. A detailed security analysis of our model shows that the it is provably secure for Security and privacy preserving.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Thein Than Thwin ◽  
Sangsuree Vasupongayya

Personal health record system (PHR system) stores health-related information of an individual. PHR system allows the data owner to manage and share his/her data with selected individuals. The originality or tamper resistance feature is crucial for PHR system because of the irreversible consequence of incorrect information. Blockchain technology becomes a potential solution due to its immutability and irreversibility properties. Unfortunately, some technical impediments such as limited storage, privacy concern, consent irrevocability, inefficient performance, and energy consumption exist. This work aims to handle these blockchain drawbacks and propose a blockchain-based PHR model. The proposed model is built using the blockchain technology to support a tamper resistance feature. Proxy reencryption and other cryptographic techniques are employed to preserve privacy. Features of the proposed model include fine-grained and flexible access control, revocability of consent, auditability, and tamper resistance. A detailed security analysis shows that the proposed model is provably secure for privacy and tamper resistance. The performance analysis shows that the proposed model achieves a better overall performance compared with the existing approach in the literature. Thus the proposed model is more suitable for the PHR system usage.


Author(s):  
Sagar Shankar Rajebhosale ◽  
Mohan Chandrabhan Nikam

A log is a record of events that happens within an organization containing systems and networks. These logs are very important for any organization, because a log file will able to record all user activities. Due to this, log files play a vital role and contain sensitive information, and therefore security should be a high priority. It is very important to the proper functioning of any organization, to securely maintain log records over an extended period of time. So, management and maintenance of logs is a very difficult task. However, deploying such a system for high security and privacy of log records may be overhead for an organization and require additional costs. Many techniques have been designed for security of log records. The alternative solution for maintaining log records is using Blockchain technology. A blockchain will provide security of the log files. Log files over a Blockchain environment leads to challenges with a decentralized storage of log files. This article proposes a secured log management over Blockchain and the use of cryptographic algorithms for dealing the issues to access a data storage. This proposed technology may be one complete solution to the secure log management problem.


Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


2019 ◽  
Vol 1 (1) ◽  
pp. 38-42
Author(s):  
Sagar Shankar Rajebhosale ◽  
Mohan Chandrabhan Nikam

A log is a record of events that happens within an organization containing systems and networks. These logs are very important for any organization, because a log file will able to record all user activities. Due to this, log files play a vital role and contain sensitive information, and therefore security should be a high priority. It is very important to the proper functioning of any organization, to securely maintain log records over an extended period of time. So, management and maintenance of logs is a very difficult task. However, deploying such a system for high security and privacy of log records may be overhead for an organization and require additional costs. Many techniques have been designed for security of log records. The alternative solution for maintaining log records is using Blockchain technology. A blockchain will provide security of the log files. Log files over a Blockchain environment leads to challenges with a decentralized storage of log files. This article proposes a secured log management over Blockchain and the use of cryptographic algorithms for dealing the issues to access a data storage. This proposed technology may be one complete solution to the secure log management problem.


Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
Georgia Tsaloli ◽  
Gustavo Banegas ◽  
Aikaterini Mitrokotsa

Often clients (e.g., sensors, organizations) need to outsource joint computations that are based on some joint inputs to external untrusted servers. These computations often rely on the aggregation of data collected from multiple clients, while the clients want to guarantee that the results are correct and, thus, an output that can be publicly verified is required. However, important security and privacy challenges are raised, since clients may hold sensitive information. In this paper, we propose an approach, called verifiable additive homomorphic secret sharing (VAHSS), to achieve practical and provably secure aggregation of data, while allowing for the clients to protect their secret data and providing public verifiability i.e., everyone should be able to verify the correctness of the computed result. We propose three VAHSS constructions by combining an additive homomorphic secret sharing (HSS) scheme, for computing the sum of the clients’ secret inputs, and three different methods for achieving public verifiability, namely: (i) homomorphic collision-resistant hash functions; (ii) linear homomorphic signatures; as well as (iii) a threshold RSA signature scheme. In all three constructions, we provide a detailed correctness, security, and verifiability analysis and detailed experimental evaluations. Our results demonstrate the efficiency of our proposed constructions, especially from the client side.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 359
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

Providing security and privacy to the Internet of Things (IoT) networks while achieving it with minimum performance requirements is an open research challenge. Blockchain technology, as a distributed and decentralized ledger, is a potential solution to tackle the limitations of the current peer-to-peer IoT networks. This paper presents the development of an integrated IoT system implementing the permissioned blockchain Hyperledger Fabric (HLF) to secure the edge computing devices by employing a local authentication process. In addition, the proposed model provides traceability for the data generated by the IoT devices. The presented solution also addresses the IoT systems’ scalability challenges, the processing power and storage issues of the IoT edge devices in the blockchain network. A set of built-in queries is leveraged by smart-contracts technology to define the rules and conditions. The paper validates the performance of the proposed model with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results show that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios.


2022 ◽  
Vol 14 (1) ◽  
pp. 1-10
Author(s):  
Tooska Dargahi ◽  
Hossein Ahmadvand ◽  
Mansour Naser Alraja ◽  
Chia-Mu Yu

Connected and Autonomous Vehicles (CAVs) are introduced to improve individuals’ quality of life by offering a wide range of services. They collect a huge amount of data and exchange them with each other and the infrastructure. The collected data usually includes sensitive information about the users and the surrounding environment. Therefore, data security and privacy are among the main challenges in this industry. Blockchain, an emerging distributed ledger, has been considered by the research community as a potential solution for enhancing data security, integrity, and transparency in Intelligent Transportation Systems (ITS). However, despite the emphasis of governments on the transparency of personal data protection practices, CAV stakeholders have not been successful in communicating appropriate information with the end users regarding the procedure of collecting, storing, and processing their personal data, as well as the data ownership. This article provides a vision of the opportunities and challenges of adopting blockchain in ITS from the “data transparency” and “privacy” perspective. The main aim is to answer the following questions: (1) Considering the amount of personal data collected by the CAVs, such as location, how would the integration of blockchain technology affect transparency , fairness , and lawfulness of personal data processing concerning the data subjects (as this is one of the main principles in the existing data protection regulations)? (2) How can the trade-off between transparency and privacy be addressed in blockchain-based ITS use cases?


Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


Queue ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 65-92
Author(s):  
Atefeh Mashatan ◽  
Douglas Heintzman

There is a new technology on the horizon that will forever change the information security and privacy industry landscape. Quantum computing, together with quantum communication, will have many beneficial applications but will also be capable of breaking many of today's most popular cryptographic techniques that help ensure data protection?in particular, confidentiality and integrity of sensitive information. These techniques are ubiquitously embedded in today's digital fabric and implemented by many industries such as finance, health care, utilities, and the broader information communication technology (ICT) community. It is therefore imperative for ICT executives to prepare for the transition from quantum-vulnerable to quantum-resistant technologies.


Sign in / Sign up

Export Citation Format

Share Document