scholarly journals Practical and Provably Secure Distributed Aggregation: Verifiable Additive Homomorphic Secret Sharing

Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 25
Author(s):  
Georgia Tsaloli ◽  
Gustavo Banegas ◽  
Aikaterini Mitrokotsa

Often clients (e.g., sensors, organizations) need to outsource joint computations that are based on some joint inputs to external untrusted servers. These computations often rely on the aggregation of data collected from multiple clients, while the clients want to guarantee that the results are correct and, thus, an output that can be publicly verified is required. However, important security and privacy challenges are raised, since clients may hold sensitive information. In this paper, we propose an approach, called verifiable additive homomorphic secret sharing (VAHSS), to achieve practical and provably secure aggregation of data, while allowing for the clients to protect their secret data and providing public verifiability i.e., everyone should be able to verify the correctness of the computed result. We propose three VAHSS constructions by combining an additive homomorphic secret sharing (HSS) scheme, for computing the sum of the clients’ secret inputs, and three different methods for achieving public verifiability, namely: (i) homomorphic collision-resistant hash functions; (ii) linear homomorphic signatures; as well as (iii) a threshold RSA signature scheme. In all three constructions, we provide a detailed correctness, security, and verifiability analysis and detailed experimental evaluations. Our results demonstrate the efficiency of our proposed constructions, especially from the client side.

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 327 ◽  
Author(s):  
Subhan Ullah ◽  
Lucio Marcenaro ◽  
Bernhard Rinner

Smart cameras are key sensors in Internet of Things (IoT) applications and often capture highly sensitive information. Therefore, security and privacy protection is a key concern. This paper introduces a lightweight security approach for smart camera IoT applications based on elliptic-curve (EC) signcryption that performs data signing and encryption in a single step. We deploy signcryption to efficiently protect sensitive data onboard the cameras and secure the data transfer from multiple cameras to multiple monitoring devices. Our multi-sender/multi-receiver approach provides integrity, authenticity, and confidentiality of data with decryption fairness for multiple receivers throughout the entire lifetime of the data. It further provides public verifiability and forward secrecy of data. Our certificateless multi-receiver aggregate-signcryption protection has been implemented for a smart camera IoT scenario, and the runtime and communication effort has been compared with single-sender/single-receiver and multi-sender/single-receiver setups.


Author(s):  
Bhagyashri H. Adhau

The Personal health record system (PHR system) which stores health-records patient's information. PHR system allows the one Hospital to manage and share his/her data with selected other individuals. The originality or tamper resistance feature is crucial for PHR system because it contains sensitive information about patients. Blockchain technology with the personal blockchain becomes a potential, great solution due to its immutability properties. Unfortunately. This work aims to propose a blockchain-based PHR model. The proposed model is built using the Hyper-ledger Fabric concept to support a tamper resistance feature. Re-encryption and other cryptographic techniques Such as Advanced Encryption Standard and Hashing algorithms are employed to preserve privacy. The proposed model include flexible access control, security concerns, auditability. A detailed security analysis of our model shows that the it is provably secure for Security and privacy preserving.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huiyong Wang ◽  
Mingjun Luo ◽  
Yong Ding

Biometric based remote authentication has been widely deployed. However, there exist security and privacy issues to be addressed since biometric data includes sensitive information. To alleviate these concerns, we design a privacy-preserving fingerprint authentication technique based on Diffie-Hellman (D-H) key exchange and secret sharing. We employ secret sharing scheme to securely distribute fragments of critical private information around a distributed network or group, which softens the burden of the template storage center (TSC) and the users. To ensure the security of template data, the user’s original fingerprint template is stored in ciphertext format in TSC. Furthermore, the D-H key exchange protocol allows TSC and the user to encrypt the fingerprint template in each query using a random one-time key, so as to protect the user’s data privacy. Security analysis indicates that our scheme enjoys indistinguishability against chosen-plaintext attacks and user anonymity. Through experimental analysis, we demonstrate that our scheme can provide secure and accurate remote fingerprint authentication.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 19
Author(s):  
T. Nusrat Jabeen ◽  
M. Chidambaram ◽  
G. Suseendran

Security and privacy has emerged to be a serious concern in which the business professional don’t desire to share their classified transaction data. In the earlier work, secured sharing of transaction databases are carried out. The performance of those methods is enhanced further by bringing in Security and Privacy aware Large Database Association Rule Mining (SPLD-ARM) framework. Now the Improved Secured Association Rule Mining (ISARM) is introduced for the horizontal and vertical segmentation of huge database. Then k-Anonymization methods referred to as suppression and generalization based Anonymization method is employed for privacy guarantee. At last, Diffie-Hellman encryption algorithm is presented in order to safeguard the sensitive information and for the storage service provider to work on encrypted information. The Diffie-Hellman algorithm is utilized for increasing the quality of the system on the overall by the generation of the secured keys and thus the actual data is protected more efficiently. Realization of the newly introduced technique is conducted in the java simulation environment that reveals that the newly introduced technique accomplishes privacy in addition to security.


2011 ◽  
Vol 130-134 ◽  
pp. 291-294
Author(s):  
Guang Liang Liu ◽  
Sheng Xian Xie ◽  
Wei Fu

On the elliptic curve cryptosystem proposed a new multi-proxy signature scheme - (t, k, n) threshold blind proxy signature scheme.In new program blind proxy signature and (t,k,n) threshold secret sharing scheme will be combined, and will not over-concentration of the rights of the blind proxy signer .Computation of the program is small, security is high, the achieve efficiency and the utility is better .can prevent a malicious user's forgery attack and have the security properties of proxy signature.


Author(s):  
Ravish G K ◽  
Thippeswamy K

In the current situation of the pandemic, global organizations are turning to online functionality to ensure survival and sustainability. The future, even though uncertain, holds great promise for the education system being online. Cloud services for education are the center of this research work as they require security and privacy. The sensitive information about the users and the institutions need to be protected from all interested third parties. since the data delivery on any of the online systems is always time sensitive, the have to be fast. In previous works some of the algorithms were explored and statistical inference based decision was presented. In this work a machine learning system is designed to make that decision based on data type and time requirements.


Author(s):  
Dr. J. Padmavathi ◽  
Sirvi Ashok Kumar Mohanlal

Today Social Media is an integral part of many people’s lives. Most of us are users of one or many of these such as Facebook, Twitter, Instagram, LinkedIn etc. Social media networks are the most common platform to communicate with our friends, family and share thoughts, photos, videos and lots of other information in the common area of interest. Privacy has become an important concern in social networking sites. Users are not aware of the privacy risks involved on social media sites and they share their sensitive information on social network sites. While these platforms are free and offer unrestricted access to their services, they puzzle the users with many issues such as privacy, security, data harvesting, content censorship, leaking personal information etc. This paper aims at analyzing, the major users of social media networks, namely, the college students. It was intended to assess the extent the consumers’ are aware of the risks of free usage and how to mitigate against these privacy issues.


2013 ◽  
Vol 380-384 ◽  
pp. 2435-2438 ◽  
Author(s):  
Shu Rong Feng ◽  
Jiao Mo ◽  
Hua Zhang ◽  
Zheng Ping Jin

Certificateless short signature schemes can not only have the advantage of certificateless signature, but also provide a short signature size in communication. However, all existing certificateless short signature schemes only proven secure against a normal adversary which can only obtain the valid signature for the original public key rather than a super adversary which can obtain the valid signature for the replaced public key. Recently, Fan et al. proposed a certificateless short signature scheme which is very efficient, but we found it is still cannot against super adversary. In this paper, we first analysis their scheme, and then present an improved scheme which can against super adversaries. Furthermore, our scheme can provide both the strongest security level and the shortest signature size compared the existed provably secure certificateless short signature scheme.


Sign in / Sign up

Export Citation Format

Share Document