scholarly journals Comparison of SRF and IRPT Algorithm for Mitigation of Voltage Sag and Voltage Swell using NPC based D-STATCOM

Author(s):  
Rushikesh Lokhande

This study describes a systematic model of Distribution STATCOM (D-STATCOM) to reduce voltage sag, and swell using Instantaneous reactive power theory also called Power Quality theory (IRPT or PQ) and Synchronous reference frame theory (SRF) using NPC three level inverter. Power quality is an event that manifests as an abnormal frequency, current and voltage resulting in the failure of end-use equipment. The main issues addressed here are voltage sag and swell. Custom power devices are utilised to overcome this problem. The Distribution STATCOM (D-STATCOM) is one of these devices, and it is the most efficient and effective modern specialized power device utilised in distribution system network. The simulation of D-STATCOM is done using MATLAB/Simulink and voltage sag and swell are mitigated.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


Author(s):  
K. Swetha ◽  
V. Sivachidambaranathan

This paper focus on distribution system by applying different control techniques in order to improve the performance of the system. In the distribution system mainly concentrate on power quality issues like reactive power control, harmonic elimination, power factor correction, etc. Because of power quality problems voltage, current, frequency are continuously changing in power systems. These changes will effects the performance of power systems. Power quality problems can be compensated by placing DSTATCOM which is connected at PCC in parallel. It is shunt connected VSI along with the filters, with the help of DSTATCOM voltage sag, swell and THD can be controlled. This paper presents detailed explanation about performance and configuration of latest control techniques to control the DSTATCOM.


2021 ◽  
Vol 17 (2) ◽  
pp. 140-150
Author(s):  
Ahmed Qasim ◽  
Fadhil Tahir ◽  
Ahmed Alsammak

In light of the widespread usage of power electronics devices, power quality (PQ) has become an increasingly essential factor. Due to nonlinear characteristics, the power electronic devices produce harmonics and consume lag current from the utility. The UPQC is a device that compensates for harmonics and reactive power while also reducing problems related to voltage and current. In this work, a three-phase, three-wire UPQC is suggested to reduce voltage-sag, voltage-swell, voltage and current harmonics. The UPQC is composed of shunt and series Active Power Filters (APFs) that are controlled utilizing the Unit Vector Template Generation (UVTG) technique. Under nonlinear loads, the suggested UPQC system can be improved PQ at the point of common coupling (PCC) in power distribution networks. The simulation results show that UPQC reduces the effect of supply voltage changes and harmonic currents on the power line under nonlinear loads, where the Total Harmonic Distortion (THD) of load voltages and source currents obtained are less than 5%, according to the IEEE-519 standard.


In the large power system, there exist different types of disturbances such as harmonic distortion, voltage Sag, voltage collapse and voltage swell. These disturbances are main causes of poor power quality in the distribution system. Out of which voltage sag is main power quality problem thus it is required to mitigate these problems to have a good power quality. This paper proposes the wind turbine based distributed generator that is designed in MATLAB simulation and detects the optimal placement of distributed generator with reliable size so that the voltage sag is eliminated. The distributed generator is used during overload condition and emergency condition to improves the power quality of the power system.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 26-36
Author(s):  
Herbert Enrique Rojas-Cubides ◽  
Audrey Soley Cruz-Bernal ◽  
Harvey David Rojas-Cubides

<p class="Abstract"><span lang="EN-US">Voltage sags are the most common power quality disturbances in electrical facilities. It may cause malfunction in sensitive equipment and process interruption. The distribution static compensator (DSTATCOM) is a device that can compensate voltage sags by injecting reactive power into distribution system. This paper shows the influence on voltage sags characteristics by the presence of twelve-pulse DSTATCOM in the modified IEEE-13 distribution system. The analysis is performed by means of a random generation of disturbances using a MATLAB routine to identify the critical buses of the test system. Further, the DSTATCOM model taking advantage of the available elements from ATP/EMTP software is described. Simulations show that when DSTATCOM is placed directly to affected bus it is possible to obtain a complete mitigation of the voltage sag. Finally, the relation between the reactive power injected by DSTATCOM, the type of voltage sag and the location of affected bus is considered.</span></p>


2021 ◽  
Vol 309 ◽  
pp. 01108
Author(s):  
Someshwara Thota ◽  
Vinay Kumar Awaar ◽  
Praveen Jugge ◽  
S Tara Kalyani

Voltage sag and voltage swell are frequently occurred power quality problems in present power distribution system, which are cause more problems to avoid these problems and maintain constant voltage at sensitive load during sag and swell Dynamic voltage restorer gives solution .we propose self-supported DVR, to minimize the cost by preventing external dc source in DVR, it is controlled by SRF PI control along with an inner current loop to stabilize the system and outer voltage loop to increase the system robustness. The proposed model provides fast voltage restoration for a short and long duration of voltage sags and swells manage wide load current variation for short and long voltage disturbances. In this paper, we present the effectiveness of the proposed method by using MATLAB/simulation results. A laboratory prototype DVR is modelled and we are using CCS studio to interface DSPTMS320F28027F


2020 ◽  
Vol 8 (6) ◽  
pp. 1181-1186

Distribution static compensator is a well known facts device which control reactive power flow in a distribution system. Nowadays major loads in distribution system are inductive loads, which will consume more reactive power. In order to improve power quality, this paper developed an IRPT control scheme for generating the reference quantity components for DSTATCOM to compensate that reactive power. DSTATCOM simulation is done in MATLAB using IRPT


Author(s):  
Veera Nagi Reddy.V ◽  
D.V. Ashok Kumar ◽  
Venkata R. Kota

Background: This paper presents voltage and current quality improvement in high/medium electrical distribution system using modulated multilevel unified power quality conditioner (MM-UPQC). Nowadays, power quality is one of the major issues due to the increase in usage of more non-linear loads in agricultural, commercial, industrial sectors. The industrial loads produce large amount of harmonics and power imbalances, which cause various power quality related issues like poor power factor, voltage sag, voltage swell, voltage interruption etc. Methods: The prime objective of this work is to design fuzzy-PI based controller based modulated multilevel UPQC for mitigation of issues related to power quality under unsymmetrical fault conditions such as LG fault and LLG fault. Results: This paper uses Instantaneous Reactive Power Theory (IRP) for phase angle adjustment with PI-fuzzy controller scheme to generate accurate reference signal for shunt and series controller of MM-UPQC. The detailed comparative analysis results of simultaneous voltage sag, swell, harmonics compensation and unsymmetrical faults mitigation are presented alongwith the MATLAB/SIMULINK software. Conclusion: Total harmonic distortion analysis is tabulated with PI and fuzzy-PI controller based MM-UPQC for different operating conditions in 4.16 KV distribution system.


Author(s):  
Miska Prasad ◽  
Ashok Kumar Akella

<p><em>This paper describes the comparative analysis of three different control techniques of distributed flexible AC transmission system (DFACTS) controller called as distributed static synchronous compensator (DSTATCOM), </em><em>aimed at power quality (PQ) enhancement in terms of voltage sag mitigation in a three-phase four-wire (3p4w) distribution system. A DSTATCOM is one of the major power quality improvement devices which consist of a DC energy source, a voltage source inverter (VSI), a filter, a coupling transformer and the control system. The control strategy based on synchronous reference frame (SRF) theory, instantaneous active and reactive current (IARC) theory and propositional-integral (PI) controller has been used for reference current generation of voltage source inverter (VSI) based DSTATCOM. The SRF, IARC and PI control based DSTATCOM is validated through dynamic simulation in a MATLAB\SIMULINK environment under linear as well as nonlinear loads.</em></p>


Author(s):  
Moirangthem Deben Singh ◽  
Ram Krishna Mehta ◽  
Arvind Kumar Singh

This paper presents a novel method of realizing one of the custom power controllers, the distribution static synchronous compensator (D-STATCOM) using current source converter (CSC) topology. Almost all the custom power controllers such as dynamic voltage restorer (DVR), unified power quality conditioner (UPQC) including D-STATCOM are generally designed and implemented by using voltage source converters (VSC) and not much research publications with CSC based approach has been reported over the last one decade. Since the D-STATCOM is a current injection device, its performance can be improved when realized by a current-source converter which can generate a controllable current directly at its output terminals and offers many advantageous features. In this paper, an attempt has been made to study the performance of a CSC based D-STATCOM suitable for use in the power distribution system in order to mitigate voltage sag and improve power quality. The proposed model uses a three leg CSC whose switching strategy is based on sinusoidal pulse width modulation (SPWM). The model has been simulated in the Matlab/Simulink environment. The results of the simulation runs under steady state and dynamic load perturbation provide excellent voltage and current waveforms that support the justification of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document