scholarly journals Current source converter based D-STATCOM for voltage sag mitigation

Author(s):  
Moirangthem Deben Singh ◽  
Ram Krishna Mehta ◽  
Arvind Kumar Singh

This paper presents a novel method of realizing one of the custom power controllers, the distribution static synchronous compensator (D-STATCOM) using current source converter (CSC) topology. Almost all the custom power controllers such as dynamic voltage restorer (DVR), unified power quality conditioner (UPQC) including D-STATCOM are generally designed and implemented by using voltage source converters (VSC) and not much research publications with CSC based approach has been reported over the last one decade. Since the D-STATCOM is a current injection device, its performance can be improved when realized by a current-source converter which can generate a controllable current directly at its output terminals and offers many advantageous features. In this paper, an attempt has been made to study the performance of a CSC based D-STATCOM suitable for use in the power distribution system in order to mitigate voltage sag and improve power quality. The proposed model uses a three leg CSC whose switching strategy is based on sinusoidal pulse width modulation (SPWM). The model has been simulated in the Matlab/Simulink environment. The results of the simulation runs under steady state and dynamic load perturbation provide excellent voltage and current waveforms that support the justification of the proposed model.

Author(s):  
A. Sathik Basha ◽  
M. Ramasamy

Increased utilization of nonlinear loads in the power distribution system with profound integration of renewable energy requires improved power quality control. This paper proposes a Reformed Second Order Generalized Integrated (R-SOGI) control scheme for enhancing the output of the Dynamic Voltage Restorer (DVR) for the objective of achieving the desired sinusoidal voltage wave shape at the common point of services and harmonic reduction. The DVR incorporates a Solar Photovoltaic (SPV) system using the Z-source Inverter (ZSI), providing the necessary active power to mitigate the voltage sag/swell and power demand. ZSI offers step-down as well as step-up abilities, it makes the converters to operate in the conditions of shoot-through. Therefore, the application of ZSI-based DVR topology seems very promising. The compensating reference voltage is generated by the R-SOGI algorithm, which offers superior output under conditions for grid voltage irregularities, including voltage sag/swell and unbalanced and distorted utility grid voltages. In comparison to DVR based on the VSI voltage inverter (VSI), the response from ZSI-DVR to a reduction of voltage distortions and harmonics is investigated. An experimental SPV ZSI-DVR prototype is developed in the laboratory to check the effectiveness of the controller and is tested under balanced and unbalanced supply and dynamic load conditions.


2016 ◽  
Vol 818 ◽  
pp. 52-57 ◽  
Author(s):  
Faridullah Kakar ◽  
Abdullah Asuhaimi bin Mohd Zin ◽  
Mohd Hafiz bin Habibuddin

Voltage sag and harmonics are the most frequent power quality problems faced by industrial and commercial customers today. Situation has been aggravated by modern sensitive industrial equipments which introduce system harmonics due to their inherent V-I characteristics. In this paper, proportional integral (PI) control technique based dynamic voltage restorer (DVR) is implemented in power distribution system to suppress voltage sag and harmonics under linear, non-linear and induction motor load conditions. Real-time power distribution system and DVR test models are built in Matlab/Simulink software. Simulation results exhibit excellent PI control approach with effective performance yielding excellent voltage regulation.


Author(s):  
D.R. PATIL ◽  
KOMAL K. MADHALE

This paper presents the design of a prototype distribution static compensator (DSTATCOM) for voltage sag mitigation in an unbalanced distribution system. The D-STATCOM is intended to replace the widely used static Var compensator (SVC). The model is based on the Voltage Source Converter (VSC) principle. A new PWM based control scheme has been implemented to control the electronic valves in two level of VSC. The D-STATCOM injects a current into the system to mitigate the voltage sags. In this work, the 6-pulse D-STATCOM configuration with IGBT has been designed using MATLAB SIMULINK. Accordingly, simulations are first carried out to illustrate the use of D-STATCOM in mitigating voltage sag in a distribution system. Simulation results prove that the D-STATCOM is capable of mitigating voltage sag as well as improving power quality of a system.


The network reconfiguring and compensating devices are the two different types of custom power solutions. The network reconfiguration devices consist of switchgear with current breaking, current restrict and current sending devices. The compensating device will compensate load by correcting power factor, unbalance etc. or supplied voltage quality will be improved. These devices are either connected in shunt (DSTATCOM) or in series (DVR) or a combination of both (UPQC) are the different types of custom power devices. This paper proposes compensating custom power device formed by the 3-phase, 3-level voltage source converters (VSC’s) connected one on another through a common dc link to three independent feeders distribution system, which is known as Generalised unified power quality conditioner (G-UPQC). Simulations are performed using MATLAB/SIMULINK package to mitigate current imperfections in first feeder which is connected with unbalanced and Non-linear load and voltage imperfections in the other two feeders which are connected with unbalanced and sensitive loads


2021 ◽  
Vol 309 ◽  
pp. 01108
Author(s):  
Someshwara Thota ◽  
Vinay Kumar Awaar ◽  
Praveen Jugge ◽  
S Tara Kalyani

Voltage sag and voltage swell are frequently occurred power quality problems in present power distribution system, which are cause more problems to avoid these problems and maintain constant voltage at sensitive load during sag and swell Dynamic voltage restorer gives solution .we propose self-supported DVR, to minimize the cost by preventing external dc source in DVR, it is controlled by SRF PI control along with an inner current loop to stabilize the system and outer voltage loop to increase the system robustness. The proposed model provides fast voltage restoration for a short and long duration of voltage sags and swells manage wide load current variation for short and long voltage disturbances. In this paper, we present the effectiveness of the proposed method by using MATLAB/simulation results. A laboratory prototype DVR is modelled and we are using CCS studio to interface DSPTMS320F28027F


Author(s):  
Kundeti Krishna Rao , M Sonia

Generally, one of the custom power device in FACTS called unified power quality conditioner, which is used to compensate the voltage and current-related Power Quality issues in the distribution systems. The proposed UPQC technology have an advantage of reduced dc-link voltage without compromising its compensation capability. This new method also helps to meet the requirement of dc-link voltage for the shunt and series active filters of the UPQC. This type of topology has a capacitor in series with the interfacing inductor across the shunt active filter for filtering purpose, and the system neutral is also considered and directly connected to neutral of distribution system avoid the requirement of the fourth leg in the voltage source inverter. This paper also presents a concept for improving power quality of a power distribution system such as an FUZZY logic controller along with the UPQC control strategy. The simulation results are compared for both conventional PI controller and FUZZY controller.


In this research proposes FLC and Artificial Neural Network (ANN) based on Dyanamic Voltage Controller (DVR) along with d q o transformation for power qulity improvement in a distribution system. Design a 9levels CHMLI based on Custom Power device with SVPWM techniques. Distribution needs to protect against the harmonics such as sag, swell and flickers are affect on standard pure power supply at the end of the load. These power quality issues are minimised with voltage injection using DVR.The designed inveter to reduced the voltage switching losses and stresses of semiconductor devices. Here used single DC voltage source with a series connection of 4 capacitors for self balancing purpose, 3 diodes,output voltage levels and Cascaded H-bridge cell. the proposed 9 level CHMLI inverter citcuit to helps reducing the number of independent voltage dc sources and IGBTS. The harmonics are less in the output voltage proposed work (new topologies)compared to conventional topology. A comparision of FLC and ANN with THD and Power Factor results and study. It has been carried out to analyse through MATLAB / SIMULINK Software.


Author(s):  
Rushikesh Lokhande

This study describes a systematic model of Distribution STATCOM (D-STATCOM) to reduce voltage sag, and swell using Instantaneous reactive power theory also called Power Quality theory (IRPT or PQ) and Synchronous reference frame theory (SRF) using NPC three level inverter. Power quality is an event that manifests as an abnormal frequency, current and voltage resulting in the failure of end-use equipment. The main issues addressed here are voltage sag and swell. Custom power devices are utilised to overcome this problem. The Distribution STATCOM (D-STATCOM) is one of these devices, and it is the most efficient and effective modern specialized power device utilised in distribution system network. The simulation of D-STATCOM is done using MATLAB/Simulink and voltage sag and swell are mitigated.


Author(s):  
Miska Prasad ◽  
Ashok Kumar Akella

<p><em>This paper describes the comparative analysis of three different control techniques of distributed flexible AC transmission system (DFACTS) controller called as distributed static synchronous compensator (DSTATCOM), </em><em>aimed at power quality (PQ) enhancement in terms of voltage sag mitigation in a three-phase four-wire (3p4w) distribution system. A DSTATCOM is one of the major power quality improvement devices which consist of a DC energy source, a voltage source inverter (VSI), a filter, a coupling transformer and the control system. The control strategy based on synchronous reference frame (SRF) theory, instantaneous active and reactive current (IARC) theory and propositional-integral (PI) controller has been used for reference current generation of voltage source inverter (VSI) based DSTATCOM. The SRF, IARC and PI control based DSTATCOM is validated through dynamic simulation in a MATLAB\SIMULINK environment under linear as well as nonlinear loads.</em></p>


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


Sign in / Sign up

Export Citation Format

Share Document