scholarly journals A review on different control techniques using DSTATCOM for distribution system studies

Author(s):  
K. Swetha ◽  
V. Sivachidambaranathan

This paper focus on distribution system by applying different control techniques in order to improve the performance of the system. In the distribution system mainly concentrate on power quality issues like reactive power control, harmonic elimination, power factor correction, etc. Because of power quality problems voltage, current, frequency are continuously changing in power systems. These changes will effects the performance of power systems. Power quality problems can be compensated by placing DSTATCOM which is connected at PCC in parallel. It is shunt connected VSI along with the filters, with the help of DSTATCOM voltage sag, swell and THD can be controlled. This paper presents detailed explanation about performance and configuration of latest control techniques to control the DSTATCOM.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


2014 ◽  
Vol 543-547 ◽  
pp. 878-883
Author(s):  
Jun Dong ◽  
Jian Guo Xu ◽  
Hao Zhang ◽  
Yu Jie Pei ◽  
Xian Feng Li

The cause serious deterioration in power quality problems for the growing impact and nonlinear load capacity, introduced SVC device in the role of modern power systems and applications. According to the lack of adequate regional dynamic reactive power regulation means to cause voltage fluctuations, harmonics exceeded the actual situation, through analysis and simulation of the existing 66kV grid power quality conditions, refers to the necessity of application of SVC, the compensation capacity for SVC, filter capacitor system parameters and control strategies were designed, the results show improved 220kV SVC reactive power flow distribution system, reducing the system once or twice a net loss, reducing the impact and harmonic interference voltage caused by nonlinear loads, system security, economic operation of great significance.


Power quality has become an important factor in power systems, for consumer and household appliances with proliferation of various electric/ electronic equipment and computer systems. The main causes of a poor power quality are harmonic currents, poor power factor, supply voltage variations, etc. In recent years the demand for the quality of electric power has been increased rapidly. Power quality problems have received a great attention nowadays because of their impacts on both utilities and customers. Voltage sag, swell, momentary interruption, under voltages, over voltages, noise and harmonics are the most common power quality disturbances.It proposes a new connection for a unified power quality compensator (UPQC) to improve the power quality of two feeders in a distribution system. It illustrates how UPQC can improve the power quality by mitigating all these PQ disturbances. The proposed configuration of the UPQC is developed and verified for various power quality disturbances by simulating the mode using MATLAB.


Author(s):  
R. Balasubramanian ◽  
S. Palani

<p>This work proposes the design of shunt hybrid filter using instantaneous power theory to improve the power quality and simulation has been carried out for 3 phase distribution system feeding different types of non linear loads. The proposed filter consists of parallel combination of 5<sup>th</sup> and 7<sup>th</sup> tuned selective harmonic elimination passive filters, which is connected in series with a small rating IGBTs based voltage source inverter. In this work, principle of compensation and filtering behavior of the system has been discussed in detail. Instantaneous real and reactive power theory based controller has been designed to estimate the reference current from the distorted current. In order to reduce the harmonics, generated reference currents are tracked by voltage source inverter using hysteresis band current controller. The performance of the hybrid scheme is evaluated for various nonlinear loads using Matlab/ Simulink tool. The detailed analysis has been carried out on harmonics reduction and DC bus voltage regulation and the simulation result ensures the feasibility of suggested control strategy. The proposed topology improves the filtering performance of the passive filter in hybrid scheme.</p>


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 26-36
Author(s):  
Herbert Enrique Rojas-Cubides ◽  
Audrey Soley Cruz-Bernal ◽  
Harvey David Rojas-Cubides

<p class="Abstract"><span lang="EN-US">Voltage sags are the most common power quality disturbances in electrical facilities. It may cause malfunction in sensitive equipment and process interruption. The distribution static compensator (DSTATCOM) is a device that can compensate voltage sags by injecting reactive power into distribution system. This paper shows the influence on voltage sags characteristics by the presence of twelve-pulse DSTATCOM in the modified IEEE-13 distribution system. The analysis is performed by means of a random generation of disturbances using a MATLAB routine to identify the critical buses of the test system. Further, the DSTATCOM model taking advantage of the available elements from ATP/EMTP software is described. Simulations show that when DSTATCOM is placed directly to affected bus it is possible to obtain a complete mitigation of the voltage sag. Finally, the relation between the reactive power injected by DSTATCOM, the type of voltage sag and the location of affected bus is considered.</span></p>


Author(s):  
Pampa Sinha ◽  
Sudipta Debath ◽  
Swapan Kumar Goswami

<p>Power quality studies have become an important issue due to widespread use of sensitive electronic equipment in power system. The sources of power quality degradation must be investigated in order to improve the power quality. Switching transients in power systems is a concern in studies of equipment insulation coordination. In this paper a wavelet based neural network has been implemented to classify the transients due to capacitor switching, motor switching, faults, converter and transformer switching. The detail reactive powers for these five transients are determined and a model which uses the detail reactive power as the input to the Probabilistic neural network (PNN) is set up to classify the above mentioned transients. The simulation has been executed for an 11kv distribution system. With the help of neural network classifier, the transient signals are effectively classified.</p>


2020 ◽  
Vol 8 (6) ◽  
pp. 1462-1465

D-STATCOM has been used to improve the power quality problems, such as voltage sags, voltage swells for different fault conditions. In order to improve the power factor and reduce the harmonic distortions, LCL passive filter is used along with D-STATCOM. The aim of this paper is to compensate the voltage sag and harmonic distortions by designing the D-STATCOM with LCL passive filter across the distribution system. The simulations were performed by using MATLAB/SIMULINK.


Author(s):  
Faheem Ali ◽  
Muhammad Naeem Arbab ◽  
Gulzar Ahmed ◽  
Majid Ashraf ◽  
Muhammad Sarim

Pakistan is faced with energy crises from the last two decades. Generation cannot balance the load demands of the electricity consumers. Power delivery systems are generally old-fashioned and overloaded. They are unable to provide consistent and uninterrupted supply to commercial, industrial, and domestic loads. Generally speaking, the Power Systems consist of loads that are inductive and resistive in nature. Heavy machinery, induction motors, and arc furnaces are heavily inductive in nature. Inductive loads when operated in a weak power system results in lagging VARs (Volt Ampere Reactive) and poor voltage regulation, which must be balanced by the same number of leading VARs in order to ensure unity power factor and thus helps in improving the voltage profile. At times the reactive VARs injected may not be sufficient to balance the VARs requires by the system, but still the power factor is improved up to some extent. In hot and humid climatic conditions, air-cooling system and chillers greatly burdens the grids. Such loads require excessive reactive VARs, and if not offered with ample reactive power, causes severe voltage drops in distribution system. To manage low voltages and power-factor, household users use automatic voltage regulators while industries connect capacitor banks. Voltage regulators control output voltage within the required limits at the expense of excessive line current from transformer, which may overburden it. Moreover, with each operation of tap changer, current rises which further intensifies line losses. Static capacitors provide stable voltage but repeated variations in load demands reliable and vigorous voltage regulation. This investigation aims to come up with a power quality improvement scheme which would deliver instantaneous control of power (reactive) with SVC (Static VAR Compensator) thus overcoming the shortcomings of step-wise banks of capacitors and or voltage regulators. Simulation work is carried out in MATLAB/SIMULINK and the results are compliance with IEEE Standards for SVCs. The device can offer steady state as well as dynamic VAR compensation under changing load conditions. Result showed considerable improvement both in terms of response time and power factor. Switching time has been improved to less than 1/10th fraction of a second which in previous simulations was 0.7 seconds approximately. Initial power factor without disturbance and without compensation was recorded to be 0.6 lagging, which after compensation was improved to 0.95 lagging. Similarly, in presence of disturbance without compensation the power factor fluctuated between 0.55 and 0.9 lagging, which after compensation was improved to 0.95 lagging and above throughout the course of operation.


2020 ◽  
Vol 5 (1) ◽  
pp. 157-175
Author(s):  
Atinkut Bayu

AbstractThis paper is focused on increasing the power quality of Unique Macaroni factory, located in Bahir Dar Town. Necessary data have been collected from the factory and the collected data are analysed. Based on the analysis of data, it is found that the factory working power factor is low and hovering around 0.7125. Voltage variations are up to 9.09%, average voltage unbalance is 2.2% and total harmonic distortion (THD) of load currents and voltage are 24.17% and 10.16%, respectively. Harmonic components have existed in the power distribution system of the factory. Based on the analysis of power quality problem in the factory, distribution static compensator (DSTATCOM) and its control system have been designed to boost power quality of the factory and the results are obtained by generating simulations using Matlab software. It is observed from outputs of the Matlab simulations that DSTATCOM can improve the power quality of the factory. Generally, the shape of the waveform of load voltage and current is improved and THD level of load voltage is minimised to 1.55% and load current THD level is 7.09%. The reactive power needed by the loads (442 kVAr) is almost provided by the DSTATCOM, so reactive power from source supply is very small such as 22 kVAr so that the power factor of the source tends to unity.


Author(s):  
Veera Nagi Reddy.V ◽  
D.V. Ashok Kumar ◽  
Venkata R. Kota

Background: This paper presents voltage and current quality improvement in high/medium electrical distribution system using modulated multilevel unified power quality conditioner (MM-UPQC). Nowadays, power quality is one of the major issues due to the increase in usage of more non-linear loads in agricultural, commercial, industrial sectors. The industrial loads produce large amount of harmonics and power imbalances, which cause various power quality related issues like poor power factor, voltage sag, voltage swell, voltage interruption etc. Methods: The prime objective of this work is to design fuzzy-PI based controller based modulated multilevel UPQC for mitigation of issues related to power quality under unsymmetrical fault conditions such as LG fault and LLG fault. Results: This paper uses Instantaneous Reactive Power Theory (IRP) for phase angle adjustment with PI-fuzzy controller scheme to generate accurate reference signal for shunt and series controller of MM-UPQC. The detailed comparative analysis results of simultaneous voltage sag, swell, harmonics compensation and unsymmetrical faults mitigation are presented alongwith the MATLAB/SIMULINK software. Conclusion: Total harmonic distortion analysis is tabulated with PI and fuzzy-PI controller based MM-UPQC for different operating conditions in 4.16 KV distribution system.


Sign in / Sign up

Export Citation Format

Share Document