scholarly journals Land Use Land Cover Analysis using Geospatial Techniques

Author(s):  
Babita Singh

Abstract: Remote sensing and Geographic information system (GIS) techniques can be used for the changing pattern of landscape. The study was conducted in Dehradun, Haridwar and Pauri Garhwal Districts of Uttarakhand State, India. In order to understand dynamics of landscape and to examine changes in the land use/cover due to anthropogenic activities, two satellite images (Landsat 5 and Landsat 8) for 1998 and 2020 were used. Google Earth Engine was used to perform supervised classification. Spectral indices (NDVI, MNDWI, SAVI, NDBI) were calculated in order to identify land cover classes. Both 1998 and 2020 satellite images were classified broadly into six classes namely agriculture, built-up, dense forest, open forest, scrub and waterbody. Using high resolution google earth satellite images and visual interpretation, overall accuracy assessment was performed. For land cover/use change analysis, these images were imported to GIS platform. Landscape configuration was observed by calculating various landscape metrices Images. It was observed that scrub land area had increased from 11 % to 14 % but a decrease in agriculture by 4.65 %. The increased value of NP, PD, PLAND, LPI and decrease in AI landscape indices shows that land fragmentation had increased since 1998. The most fragmented classes were scrub (PD - 3.32 to 5.18) and open forest (PD - 3.57 to 5.07). Decrease in AI for open forest, agriculture, built-up indicated that more fragmented patches of these classes were present. The result confirmed increase in the fragmentation of landscape from 1998 onwards. Keywords: GIS, LULC, landscape metrics, Remote Sensing

2020 ◽  
Vol 62 (4) ◽  
pp. 288-305
Author(s):  
Addo Koranteng ◽  
Isaac Adu-Poku ◽  
Emmanuel Donkor ◽  
Tomasz Zawiła-Niedźwiecki

AbstractLand use and land cover (LULC) terrain in Ghana has undergone profound changes over the past years emanating mainly from anthropogenic activities, which have impacted countrywide and sub-regional environment. This study is a comprehensive analysis via integrated approach of geospatial procedures such as Remote Sensing (RS) and Geographic Information System (GIS) of past, present and future LULC from satellite imagery covering Ghana’s Ashanti regional capital (Kumasi) and surrounding districts. Multi-temporal satellite imagery data sets of four different years, 1990 (Landsat TM), 2000 (Landsat ETM+), 2010 (Alos and Disaster Monitoring Constellation-DMC) and 2020 (SENTINEL), spanning over a 30-year period were mapped. Five major LULC categories – Closed Forest, Open Forest, Agriculture, Built-up and Water – were delineated premised on the prevailing geographical settings, field study and remote sensing data. Markov Cellular Automata modelling was applied to predict the probable LULC change consequence for the next 20 years (2040). The study revealed that both Open Forest and Agriculture class categories decreased 51.98 to 38.82 and 27.48 to 20.11, respectively. Meanwhile, Built-up class increased from 4.8% to 24.8% (over 500% increment from 1990 to 2020). Rapid urbanization caused the depletion of forest cover and conversion of farmlands into human settlements. The 2040 forecast map showed an upward increment in the Built-up area up to 35.2% at the expense of other LULC class categories. This trend from the past to the forecasted future would demand that judicious LULC resolutions have to be made to keep Ghana’s forest cover, provide arable land for farming activities and alleviate the effects of climate change.


2021 ◽  
Author(s):  
Shubham Lakhera ◽  
Dal Chand Rahi

Abstract Land use/ land cover is an important component in understanding the interactions of human activities with the environment and thus it is necessary to monitor and detect the changes to maintain a sustainable environment. In this paper, an attempt has been made to study the changes in land use and land cover of Jabalpur district in the last 4 decades from 1991 to 2021 classifying majorly in Forest (Medium to Dense), Trees, Waterbody, Settlements & Agricultural fields. The study was carried out through the Remote Sensing and GIS approach using High-resolution Imagery from Google Earth, and LANDSAT 8, 7, 5 imagery of 2021, 2011, 2001, 1991 respectively. The land use/land cover classification was performed based on the Supervised Classification approach available in ArcGIS. GIS software is used to prepare the thematic maps and ground truth observations were also performed to check the accuracy of the classification. The present study has brought out that the Tree cover has been decreased from 12.97–5.40% during 1991-2021 showing a considerable decrease in Forest area as well. The settlement area increased from 4.26% in 1991 to 12.46% in 2021. The areas under natural streams, have shown no significant change and can be considered as a positive sign for sustainable development.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2020 ◽  
Vol 12 (1) ◽  
pp. 197
Author(s):  
Debbie Chamberlain ◽  
Stuart Phinn ◽  
Hugh Possingham

Great Barrier Reef catchments are under pressure from the effects of climate change, landscape modifications, and hydrology alterations. With the use of remote sensing datasets covering large areas, conventional methods of change detection can expose broad transitions, whereas workflows that excerpt data for time-series trends divulge more subtle transformations of land cover modification. Here, we combine both these approaches to investigate change and trends in a large estuarine region of Central Queensland, Australia, that encompasses a national park and is adjacent to the Great Barrier Reef World Heritage site. Nine information classes were compiled in a maximum likelihood post classification change analysis in 2004–2017. Mangroves decreased (1146 hectares), as was the case with estuarine wetland (1495 hectares), and saltmarsh grass (1546 hectares). The overall classification accuracies and Kappa coefficient for 2004, 2006, 2009, 2013, 2015, and 2017 land cover maps were 85%, 88%, 88%, 89%, 81%, and 92%, respectively. The cumulative area of open forest, estuarine wetland, and saltmarsh grass (1628 hectares) was converted to pasture in a thematic change analysis showing the “from–to” change. We generated linear regression relationships to examine trends in pixel values across the time series. Our findings from a trend analysis showed a decreasing trend (p value range = 0.001–0.099) in the vegetation extent of open forest, fringing mangroves, estuarine wetlands, saltmarsh grass, and grazing areas, but this was inconsistent across the study site. Similar to reports from tropical regions elsewhere, saltmarsh grass is poorly represented in the national park. A severe tropical cyclone preceding the capture of the 2017 Landsat 8 Operational Land Imager (OLI) image was likely the main driver for reduced areas of shoreline and stream vegetation. Our research contributes to the body of knowledge on coastal ecosystem dynamics to enable planning to achieve more effective conservation outcomes.


2021 ◽  
Vol 9 (1) ◽  
pp. 15-27
Author(s):  
Saleha Jamal ◽  
Md Ashif Ali

Wetlands are often called as biological “supermarket” and “kidneys of the landscape” due to their multiple functions, including water purification, water storage, processing of carbon and other nutrients, stabilization of shorelines and support of aquatic lives. Unfortunately, although being dynamic and productive ecosystem, these wetlands have been affected by human induced land use changes. India is losing wetlands at the rate of 2 to 3 per cent each year due to over-population, direct deforestation, urban encroachment, over fishing, irrigation and agriculture etc (Prasher, 2018). The present study tries to investigate the nature and degree of land use/land cover transformation, their causes and resultant effects on Chatra Wetland. To fulfil the purpose of the study, GIS and remote sensing techniques have been employed. Satellite imageries have been used from United States Geological Survey (USGS) Landsat 7 Enhanced Thematic Mapper plus and Landsat 8 Operational Land Imager for the year 2003 and 2018. Cloud free imageries of 2003 and 2018 have been downloaded from USGS (https://glovis.usgs.gov/) for the month of March and April respectively. Image processing, supervised classificationhas been done in ArcGis 10.5 and ERDAS IMAGINE 14. The study reveals that the settlement hasincreased by about 90.43 per cent in the last 15 years around the Chatra wetland within the bufferzone of 2 Sq km. Similarly agriculture, vegetation, water body, swamp and wasteland witnessed asignificant decrease by 5.94 per cent, 57.69 per cent, 26.64 per cent 4.52 per cent and 55.27 per centrespectively from 2003 to 2018.


Author(s):  
Ajagbe, Abeeb Babajide ◽  
Oguntade, Sodiq Solagbade ◽  
Abiade, Idunnu Temitope

Land use assessment and land cover transition need remote sensing (RS) and geographic information systems (GIS). Land use/land cover changes of Ado-Ekiti Local Government Area, Ekiti State, Nigeria, were examined in this research. Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI were acquired for 1985, 2000, and 2015 respectively. Image scene with path 190 and row 055 was used for the three Landsat Images. A supervised digital image classification approach was used in the study, which was carried out using the ArcMap 10.4 Software. Five land use/land cover categories were recognised and recorded as polygons, including Built-up Areas, Bare surface, water body, Dense Vegetation and Sparse Vegetation. The variations in the area covered by the various polygons were measured in hectares. This study revealed that between 1985 and 2015, there was a significant change in Built-up areas from 1694 hectares to 5656 hectares. However, there was a reduction in water body from 25 hectares in 1985 to 19 hectares in 2015; there was a severe reduction in the bare surface from 4641 hectares in 1985 to 2237 hectares in 2015. Generally, the findings show that the number of people building houses in the study area has grown over time, as many people reside in the outskirts of the Local Government Area, resulting in a decrease in the vegetation and bare surfaces. The maps created in this research will be useful to the Ekiti State Ministry of Land, Housing, Physical Planning, and Urban Development to develop strategies and government policies to benefit people living in the Ado-Ekiti Local Government Area of the State.


Ever since the advent of modern geo information systems, tracking environmental changes due to natural and/or manmade causes with the aid of remote sensing applications has been an indispensable tool in numerous fields of geography, most of the earth science disciplines, defence, intelligence, commerce, economics and administrative planning. One among these applications is the construction of land use and land cover maps through image classification process. Land Use / Land Cover (LULC) information is a crucial input in designing efficient strategies for managing natural resources and monitoring environmental changes from time to time. The present study aims to know the extent of land cover and its usage in Davangere region of Karnataka, India. In this study, satellite image of Davangere during October-November 2018 was used for LULC supervised classification with the help of remote sensing tools like QGIS and Google Earth Engine. Six LULC classes were decided to locate on the map and the accuracy assessment was done using theoretical error matrix and Kappa coefficient. The key findings include LULC under Water bodies (8%), Built up Area (15.1%), Vegetation (9%), Horticulture (20.8%), Agriculture (39.3%) and Others (7%) with overall accuracy of 94.8% and Kappa coefficient of 0.866 indicating almost accurate goodness of classification


Author(s):  
Crismeire Isbaex ◽  
Ana Margarida Coelho

Mapping land-cover/land-use (LCLU) and estimating forest biomass using satellite images is a challenge given the diversity of sensors available and the heterogeneity of forests. Copernicus program served by the Sentinel satellites family and the Google Earth Engine (GEE) platform, both with free and open services accessible to its users, present a good approach for mapping vegetation and estimate forest biomass on a global, regional, or local scale, periodically and in a repeated way. The Sentinel-2 (S2) systematically acquires optical imagery and provides global monitoring data with high spatial resolution (10–60 m) images. Given the novelty of information on the use of S2 data, this chapter presents a review on LCLU maps and forest above-ground biomass (AGB) estimates, in addition to exploring the efficiency of using the GEE platform. The Sentinel data have great potential for studies on LCLU classification and forest biomass estimates. The GEE platform is a promising tool for executing complex workflows of satellite data processing.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 139 ◽  
Author(s):  
Henrique Luis Godinho Cassol ◽  
Egidio Arai ◽  
Edson Eyji Sano ◽  
Andeise Cerqueira Dutra ◽  
Tânia Beatriz Hoffmann ◽  
...  

This paper presents a new approach for rapidly assessing the extent of land use and land cover (LULC) areas in Mato Grosso state, Brazil. The novel idea is the use of an annual time series of fraction images derived from the linear spectral mixing model (LSMM) instead of original bands. The LSMM was applied to the Project for On-Board Autonomy-Vegetation (PROBA-V) 100-m data composites from 2015 (~73 scenes/year, cloud-free images, in theory), generating vegetation, soil, and shade fraction images. These fraction images highlight the LULC components inside the pixels. The other new idea is to reduce these time series to only six single bands representing the maximum and standard deviation values of these fraction images in an annual composite, reducing the volume of data to classify the main LULC classes. The whole image classification process was conducted in the Google Earth Engine platform using the pixel-based random forest algorithm. A set of 622 samples of each LULC class was collected by visual inspection of PROBA-V and Landsat-8 Operational Land Imager (OLI) images and divided into training and validation datasets. The performance of the method was evaluated by the overall accuracy and confusion matrix. The overall accuracy was 92.4%, with the lowest misclassification found for cropland and forestland (<9% error). The same validation data set showed 88% agreement with the LULC map made available by the Landsat-based MapBiomas project. This proposed method has the potential to be used operationally to accurately map the main LULC areas and to rapidly use the PROBA-V dataset at regional or national levels.


2021 ◽  
pp. 194-200
Author(s):  
Darshana Rawal ◽  
Vishal Gupta

Spatio-temporal changes in land use land cover (LULC) have been relevant factors in causing the changes in Urban Heat Island (UHI) pattern across rural and urban areas all over the world. Studies conducted have shown that the relation between LULC on scale of the UHI can be an important factor assessing the condition not only for a country but for environment of a city also. Over the years it is reflected in health of vegetation and urbanization pattern of cities. As the thermal remote sensing has been evolved, the measurement of the temperature through satellite products has become possible. Thermal data derived through remote sensing gives us birds-eye-view to see how the thermal data varies in the entire city. In this study such relations are shown over Ahmedabad city of India for the period of 2007 to 2020 using Landsat series satellite data. Land Surface Temperature (LST) is calculated using Google Earth Engine Platform Surface Brightness Temperature for Landsat data and using Radiative Transfer Equation for Landsat data. LST is correlated with land use land cover mainly Built-up, Vegetation, Barren land, Water & Other and corresponding Land Use and Land Cover respectively, and it is found that LST is positively related with all indices except for Normalize Difference Vegetation Index (NDVI) with strong negative correlation and R 2 of 0.51.


Sign in / Sign up

Export Citation Format

Share Document