scholarly journals Digital Assistant for Sound Classification Using Spectral Fingerprinting

Author(s):  
Ria Sinha

Abstract: This paper describes a digital assistant designed to help hearing-impaired people sense ambient sounds. The assistant relies on obtaining audio signals from the ambient environment of a hearing-impaired person. The audio signals are analysed by a machine learning model that uses spectral signatures as features to classify audio signals into audio categories (e.g., emergency, animal sounds, etc.) and specific audio types within the categories (e.g., ambulance siren, dog barking, etc.) and notify the user leveraging a mobile or wearable device. The user can configure active notification preferences and view historical logs. The machine learning classifier is periodically trained externally based on labeled audio sound samples. Additional system features include an audio amplification option and a speech to text option for transcribing human speech to text output. Keywords: assistive technology, sound classification, machine learning, audio processing, spectral fingerprinting

2021 ◽  
Vol 11 (8) ◽  
pp. 3439
Author(s):  
Debashis Das Chakladar ◽  
Pradeep Kumar ◽  
Shubham Mandal ◽  
Partha Pratim Roy ◽  
Masakazu Iwamura ◽  
...  

Sign language is a visual language for communication used by hearing-impaired people with the help of hand and finger movements. Indian Sign Language (ISL) is a well-developed and standard way of communication for hearing-impaired people living in India. However, other people who use spoken language always face difficulty while communicating with a hearing-impaired person due to lack of sign language knowledge. In this study, we have developed a 3D avatar-based sign language learning system that converts the input speech/text into corresponding sign movements for ISL. The system consists of three modules. Initially, the input speech is converted into an English sentence. Then, that English sentence is converted into the corresponding ISL sentence using the Natural Language Processing (NLP) technique. Finally, the motion of the 3D avatar is defined based on the ISL sentence. The translation module achieves a 10.50 SER (Sign Error Rate) score.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1128
Author(s):  
Mohammad Arshad ◽  
Md. Ali Hussain

Real-time network attacks have become an increasingly serious issue to LAN/WAN security in recent years. As the size of the network flow increases, it becomes difficult to pre-process and analyze the network packets using the traditional network intrusion detection tools and techniques. Traditional NID tools and techniques require high computational memory and time to process large number of packets in incremental manner due to limited buffer size. Web intrusion detection is also one of the major threat to real-time web applications due to unauthorized user’s request to web server and online databases. In this paper, a hybrid real-time LAN/WAN and Web IDS model is designed and implemented using the machine learning classifier. In this model, different types of attacks are detected and labelled prior to train the machine learning model. Future network packets are predicted using the trained machine learning classifier for attack prediction. Experimental results are simulated on real-time LAN/WAN network and client-server web application for performance analysis. Simulated results show that the proposed machine learning based attack detection model is better than the traditional statistical and rule based learning models in terms of time, detection rate are concerned.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abolfazl Zargari Khuzani ◽  
Morteza Heidari ◽  
S. Ali Shariati

AbstractChest-X ray (CXR) radiography can be used as a first-line triage process for non-COVID-19 patients with pneumonia. However, the similarity between features of CXR images of COVID-19 and pneumonia caused by other infections makes the differential diagnosis by radiologists challenging. We hypothesized that machine learning-based classifiers can reliably distinguish the CXR images of COVID-19 patients from other forms of pneumonia. We used a dimensionality reduction method to generate a set of optimal features of CXR images to build an efficient machine learning classifier that can distinguish COVID-19 cases from non-COVID-19 cases with high accuracy and sensitivity. By using global features of the whole CXR images, we successfully implemented our classifier using a relatively small dataset of CXR images. We propose that our COVID-Classifier can be used in conjunction with other tests for optimal allocation of hospital resources by rapid triage of non-COVID-19 cases.


2020 ◽  
Author(s):  
Abolfazl Zargari Khuzani ◽  
Morteza Heidari ◽  
Ali Shariati

Chest-X ray (CXR) radiography can be used as a first-line triage process for non-COVID-19 patients with pneumonia. However, the similarity between features of CXR images of COVID-19 and pneumonia caused by other infections make the differential diagnosis by radiologists challenging. We hypothesized that machine learning-based classifiers can reliably distinguish the CXR images of COVID-19 patients from other forms of pneumonia. We used a dimensionality reduction method to generate a set of optimal features of CXR images to build an efficient machine learning classifier that can distinguish COVID-19 cases from non-COVID-19 cases with high accuracy and sensitivity. By using global features of the whole CXR images, we were able to successfully implement our classifier using a relatively small dataset of CXR images. We propose that our COVID-Classifier can be used in conjunction with other tests for optimal allocation of hospital resources by rapid triage of non-COVID-19 cases.


2021 ◽  
Author(s):  
Mahyudin Ritonga ◽  
Rasha M.Abd El-Aziz ◽  
Varsha Dr. ◽  
Maulik Bader Alazzam ◽  
Fawaz Alassery ◽  
...  

Abstract Exceptional research activities have been endorsed by the Arabic Sign Language for recognizing gestures and hand signs utilizing the deep learning model. Sign languages refer to the gestures, which are utilized by hearing impaired people for communication. These gestures are complex for understanding by normal people. Due to variation of Arabic Sign Language (ArSL) from one territory to another territory or between countries, the recognition of Arabic Sign Language (ArSL) became an arduous research problem. The recognition of Arabic Sign Language has been learned and implemented utilizing multiple traditional and intelligent approaches and there were only less attempts made for enhancing the process with the help of deep learning networks. The proposed system here encapsulates a Convolutional Neural Network (CNN) based machine learning technique, which utilizes wearable sensors for recognition of the Arabic Sign Language (ArSL). The model suits to all local Arabic gestures, which are used by the hearing-impaired people of the local Arabic community. The proposed system has a reasonable and moderate accuracy. Initially a deep Convolutional network is built for feature extraction, which is extracted from the collected data by the wearable sensors. These sensors are used for recognizing accurately the 30 hand sign letters of the Arabic sign language. DG5-V hand gloves embedded with wearable sensors are used for capturing the hand movements in the dataset. The CNN approach is utilized for the classification purpose. The hand gestures of the Arabic sign language are the input and the vocalized speech is the output of the proposed system. The results achieved a recognition rate of 90%. The proposed system was found highly efficient for translating hand gestures of the Arabic Sign Language into speech and writing.


Sarcoma ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ieva Malinauskaite ◽  
Jeremy Hofmeister ◽  
Simon Burgermeister ◽  
Angeliki Neroladaki ◽  
Marion Hamard ◽  
...  

Distinguishing lipoma from liposarcoma is challenging on conventional MRI examination. In case of uncertain diagnosis following MRI, further invasive procedure (percutaneous biopsy or surgery) is often required to allow for diagnosis based on histopathological examination. Radiomics and machine learning allow for several types of pathologies encountered on radiological images to be automatically and reliably distinguished. The aim of the study was to assess the contribution of radiomics and machine learning in the differentiation between soft-tissue lipoma and liposarcoma on preoperative MRI and to assess the diagnostic accuracy of a machine-learning model compared to musculoskeletal radiologists. 86 radiomics features were retrospectively extracted from volume-of-interest on T1-weighted spin-echo 1.5 and 3.0 Tesla MRI of 38 soft-tissue tumors (24 lipomas and 14 liposarcomas, based on histopathological diagnosis). These radiomics features were then used to train a machine-learning classifier to distinguish lipoma and liposarcoma. The generalization performance of the machine-learning model was assessed using Monte-Carlo cross-validation and receiver operating characteristic curve analysis (ROC-AUC). Finally, the performance of the machine-learning model was compared to the accuracy of three specialized musculoskeletal radiologists using the McNemar test. Machine-learning classifier accurately distinguished lipoma and liposarcoma, with a ROC-AUC of 0.926. Notably, it performed better than the three specialized musculoskeletal radiologists reviewing the same patients, who achieved ROC-AUC of 0.685, 0.805, and 0.785. Despite being developed on few cases, the trained machine-learning classifier accurately distinguishes lipoma and liposarcoma on preoperative MRI, with better performance than specialized musculoskeletal radiologists.


2021 ◽  
Vol 23 (07) ◽  
pp. 62-70
Author(s):  
Nagesh B ◽  
◽  
Dr. M. Uttara Kumari ◽  

Audio processing is an important branch under the signal processing domain. It deals with the manipulation of the audio signals to achieve a task like filtering, data compression, speech processing, noise suppression, etc. which improves the quality of the audio signal. For applications such as natural language processing, speech generation, automatic speech recognition, the conventional algorithms aren’t sufficient. There is a need for machine learning or deep learning algorithms which can be implemented so that the audio signal processing can be achieved with good results and accuracy. In this paper, a review of the various algorithms used by researchers in the past has been described and gives the appropriate algorithm that can be used for the respective applications.


2021 ◽  
Author(s):  
Manesh Chawla ◽  
Amreek Singh

Abstract. Snow avalanches pose serious hazard to people and property in snow bound mountains. Snow mass sliding downslope can gain sufficient momentum to destroy buildings, uproot trees and kill people. Forecasting and in turn avoiding exposure to avalanches is a much practiced measure to mitigate hazard world over. However, sufficient snow stability data for accurate forecasting is generally difficult to collect. Hence forecasters infer snow stability largely through intuitive reasoning based upon their knowledge of local weather, terrain and sparsely available snowpack observations. Machine learning models may add more objectivity to this intuitive inference process. In this paper we propose a data efficient machine learning classifier using the technique of Random Forest. The model can be trained with significantly lesser training data compared to other avalanche forecasting models and it generates useful outputs to minimise and quantify uncertainty. Besides, the model generates intricate reasoning descriptions which are difficult to observe manually. Furthermore, the model data requirement can be met through automatic systems. The proposed model advances the field by being inexpensive and convenient for operational use due to its data efficiency and ability to describe its decisions besides the potential of lending autonomy to the process.


Sign in / Sign up

Export Citation Format

Share Document