IoT-based Precision Agriculture Platform: A Review

Author(s):  
Rutvik Solanki

Abstract: Technological advancements such as the Internet of Things (IoT) and Artificial Intelligence (AI) are helping to boost the global agricultural sector as it is expected to grow by around seventy percent in the next two decades. There are sensor-based systems in place to keep track of the plants and the surrounding environment. This technology allows farmers to watch and control farm operations from afar, but it has a few limitations. For farmers, these technologies are prohibitively expensive and demand a high level of technological competence. Besides, Climate change has a significant impact on crops because increased temperatures and changes in precipitation patterns increase the likelihood of disease outbreaks, resulting in crop losses and potentially irreversible plant destruction. Because of recent advancements in IoT and Cloud Computing, new applications built on highly innovative and scalable service platforms are now being developed. The use of Internet of Things (IoT) solutions has enormous promise for improving the quality and safety of agricultural products. Precision farming's telemonitoring system relies heavily on Internet of Things (IoT) platforms; therefore, this article quickly reviews the most common IoT platforms used in precision agriculture, highlighting both their key benefits and drawbacks

2019 ◽  
Vol 13 (1) ◽  
pp. 14-20 ◽  
Author(s):  
V. M. Korotchenya ◽  
G. I. Lichman ◽  
I. G. Smirnov

Currently, the influence of program documents on digital agriculture development is rather great in our country. Within the framework of the European Association of Agricultural Mechanical Engineering, a relevant definition of agriculture 4.0 has been elaborated and introduced.Research purpose: offering general recommendations on the digitalization of agriculture in RussiaMaterials and methods. The authors make use of the normative approach: the core of digital agriculture is compared with the current state of the agricultural sector in Russia.Results and discussion. The analysis has found that digital agriculture (agriculture 4.0 and 5.0) is based on developed mechanized technologies (agriculture 2.0), precision agriculture technologies (agriculture 3.0), the use of such digital technologies and technical means as the Internet of things, artificial intelligence, and robotics. The success of introducing digital agriculture depends on the success of all the three levels of the system. However, the problem of the lack of agricultural machinery indicates insufficient development of mechanized technologies;  poor implementation of precision agriculture technologies means the lack of experience of using these technologies by the majority of farms in our country; an insufficient number of leading Russian IT companies (such as Amazon, Apple, Google, IBM, Intel, Microsoft etc.) weakens the country’s capacity in making a breakthrough in the development of the Internet of things, artificial intelligence, and robotics.Conclusions.The authors have identified the need to form scientific approaches to the digitization of technological operations used in the cultivation of agricultural crops and classified precision agriculture technologies. They have underlined that the digitization of agricultural production in Russia must be carried out along with intensified mechanization (energy saturation); also, to introduce technologies of precision agriculture and digital agriculture, it is necessary to organize state-funded centers for training farmers in the use of these technologies. Finally, it is necessary to take measures to strengthen the development of the IT sphere, as well as formulate an integral approach to the problem of digitalization.


2020 ◽  
Vol 63 (1) ◽  
pp. 57-67
Author(s):  
Steven R. Evett ◽  
Susan A. O’Shaughnessy ◽  
Manuel A. Andrade ◽  
William P. Kustas ◽  
M. C. Anderson ◽  
...  

Highlights.Precision agriculture (PA) applications in irrigation are stymied by lack of decision support systems.Modern PA relies on sensor systems and near real-time feedback for irrigation decision support and control.Sophisticated understanding of biophysics and biological systems now guides site-specific irrigation.The internet of things (IOT) enables new ways to increase yield per unit of water used and nutrient use efficiency. Keywords: Crop water productivity, Decision support system, Internet of things, Remote sensing, SCADA, Soil water content.


2020 ◽  
Vol 8 (6) ◽  
pp. 3306-3310

IoT is defined as smart machines collaborating and communicating with different gadgets, objects, environments and framework, resulting in amount of data generated and that processed the data into useful actions which can be used to command and control things and ultimately help human beings to make life easier. IoT platforms play a central role within this evolution by providing significant building blocks. Major building blocks used in IoT is sensor. Sensors play an important role in IoT that allows the Internet of Things (IoT) by collecting the data for wiser decisions. This paper reviews various types of IoT sensors along with its application.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 61-63 ◽  
Author(s):  
Akihiro Fujii

The Internet of Things (IoT) is a term that describes a system of computing devices, digital machines, objects, animals or people that are interrelated. Each of the interrelated 'things' are given a unique identifier and the ability to transfer data over a network that does not require human-to-human or human-to-computer interaction. Examples of IoT in practice include a human with a heart monitor implant, an animal with a biochip transponder (an electronic device inserted under the skin that gives the animal a unique identification number) and a car that has built-in sensors which can alert the driver about any problems, such as when the type pressure is low. The concept of a network of devices was established as early as 1982, although the term 'Internet of Things' was almost certainly first coined by Kevin Ashton in 1999. Since then, IoT devices have become ubiquitous, certainly in some parts of the world. Although there have been significant developments in the technology associated with IoT, the concept is far from being fully realised. Indeed, the potential for the reach of IoT extends to areas which some would find surprising. Researchers at the Faculty of Science and Engineering, Hosei University in Japan, are exploring using IoT in the agricultural sector, with some specific work on the production of melons. For the advancement of IoT in agriculture, difficult and important issues are implementation of subtle activities into computers procedure. The researchers challenges are going on.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


Author(s):  
John P.T. Mo ◽  
Ronald C. Beckett

Since the announcement of Industry 4.0 in 2012, multiple variants of this industry paradigm have emerged and built on the common platform of Internet of Things. Traditional engineering driven industries such as aerospace and automotive are able to align with Industry 4.0 and operate on requirements of the Internet of Things platform. Process driven industries such as water treatment and food processing are more influenced by societal perspectives and evolve into Water 4.0 or Dairy 4.0. In essence, the main outcomes of these X4.0 (where X can be any one of Quality, Water or a combination of) paradigms are facilitating communications between socio-technical systems and accumulating large amount of data. As the X4.0 paradigms are researched, defined, developed and applied, many real examples in industries have demonstrated the lack of system of systems design consideration, e.g. the issue of training together with the use of digital twin to simulate operation scenarios and faults in maintenance may lag behind events triggered in the hostile real world environment. This paper examines, from a high level system of systems perspective, how transdisciplinary engineering can incorporate data quality on the often neglected system elements of people and process while adapting applications to operate within the X4.0 paradigms.


Author(s):  
Paul Fremantle ◽  
Philip Scott

The rapid growth of small Internet connected devices, known as the Internet of Things (IoT), is creating a new set of challenges to create secure, private infrastructures. This paper reviews the current literature on the challenges and approaches to security and privacy in the Internet of Things, with a strong focus on how these aspects are handled in IoT middleware. We focus on IoT middleware because many systems are built from existing middleware and these inherit the underlying security properties of the middleware framework. The paper is composed of three main sections. Firstly, we propose a matrix of security and privacy threats for IoT. This matrix is used as the basis of a widespread literature review aimed at identifying requirements on IoT platforms and middleware. Secondly, we present a structured literature review of the available middleware and how security is handled in these middleware approaches. We utilise the requirements from the first phase to evaluate. Finally, we draw a set of conclusions and identify further work in this area.


2017 ◽  
Author(s):  
Paul Fremantle ◽  
Philip Scott

The rapid growth of small Internet connected devices, known as the Internet of Things (IoT), is creating a new set of challenges to create secure, private infrastructures. This paper reviews the current literature on the challenges and approaches to security and privacy in the Internet of Things, with a strong focus on how these aspects are handled in IoT middleware. We focus on IoT middleware because many systems are built from existing middleware and these inherit the underlying security properties of the middleware framework. The paper is composed of three main sections. Firstly, we propose a matrix of security and privacy threats for IoT. This matrix is used as the basis of a widespread literature review aimed at identifying requirements on IoT platforms and middleware. Secondly, we present a structured literature review of the available middleware and how security is handled in these middleware approaches. We utilise the requirements from the first phase to evaluate. Finally, we draw a set of conclusions and identify further work in this area.


Sign in / Sign up

Export Citation Format

Share Document