scholarly journals Optimization Technique for Reducing Energy Consumption of Rapid Transit Mode

Author(s):  
Dhiraj Devendra Yadav

Abstract: Since the time, our mother earth was created, energy was taken from the universe(System),now energy is being depleted as non-renewable source. Energy can neither be created nor be destroyed as it transforms in one form to another. So researchers came up with renewable source of energy as the solution like solar, wind and tidal waves. The world is experiencing an energy crisis and the prices of petroleum products like petrol and diesel has gone up. So its time to come forward and save the future of our mother earth. The paper deals in reducing energy consumption of rail rapid transit mode i.e. of metro. It shows how driving behaviour can be controlled using optimized speed profile and efficiency can be managed. It states round trip data taken of Mumbai(India) metro from Versova to Ghatkopar and viceversa. Speed data was taken from GPS(Global Postioning System) embedded in Smart watch Software. Time interval was noted and distance, acceleration data was formulated using Newtons Equations of Motion. Energy Consumed was drawn out from tractive effort data. Then efficiency, energy lost and regenerative braking energy was calculated using Work Energy Theorem. Maximum efficiency of 88.27% was obtained between Asalpha to Jagruti Nagar Station while between Western Express Highway to Andheri Station a 72.66% efficiency was analysed. This affects the time interval of metro trains arriving at station, also the amount of boarding and alighting passengers from the train. A model was designed and simulated using results obtained. The paper also deals with the prototype of Regenerative energy which can either be used in braking systems but also for acceleration and cruising purpose. The idea can benefit a developing country like India where 6.3% GDP is from Transportation Industry. Keywords: optimized speed profile, efficiency, regenerative braking energy

Author(s):  
An Thi Hoai Thu Anh ◽  
Nguyen Van Quyen ◽  
Nguyen Thanh Hai ◽  
Nguyen Van Lien ◽  
Vu Hoang Phuong

An urban railway is a complex technical system that consumes large amounts of energy, but this means of transportation still has been obtained more and more popularity in densely populated cities because of its features of high-capacity transportation capability, high speed, security, punctuality, lower emission, reduction of traffic congestion. The improved energy consumption and environment are two of the main objectives for future transportation. Electrified trains can meet these objectives by the recuperation and reuse of regenerative braking energy and by the energy - efficient operation. Two methods are to enhance energy efficiency: one is to improve technology (e.g., using energy storage system, reversible or active substations to recuperate regenerative braking energy, replacing traction electric motors  by energy-efficient traction system as permanent magnet electrical motors; train's mass reduction by lightweight material mass...); the other is to improve operational procedures (e.g. energy efficient driving including: eco-driving; speed profile optimization; Driving Advice System (DAS); Automatic Train Operation (ATO); traffic management optimization...). Among a lot of above solutions for saving energy, which one is suitable for current conditions of metro lines in Vietnam. The paper proposes the optimization method based on Pontryagin's Maximum Principle (PMP) to find the optimal speed profile for electrified train of Cat Linh-Ha Dong metro line, Vietnam in an effort to minimize the train operation energy consumption.


Author(s):  
Mohammed Mostafa Abdulghafoor ◽  
Raed Abdulkareem Hasan ◽  
Zeyad Hussein Salih ◽  
Hayder Ali Nemah Alshara ◽  
Nicolae Tapus

2021 ◽  
Vol 13 (14) ◽  
pp. 7865
Author(s):  
Mohammed Mahedi Hasan ◽  
Nikos Avramis ◽  
Mikaela Ranta ◽  
Andoni Saez-de-Ibarra ◽  
Mohamed El Baghdadi ◽  
...  

The paper presents use case simulations of fleets of electric buses in two cities in Europe, one with a warm Mediterranean climate and the other with a Northern European (cool temperate) climate, to compare the different climatic effects of the thermal management strategy and charging management strategy. Two bus routes are selected in each city, and the effects of their speed, elevation, and passenger profiles on the energy and thermal management strategy of vehicles are evaluated. A multi-objective optimization technique, the improved Simple Optimization technique, and a “brute-force” Monte Carlo technique were employed to determine the optimal number of chargers and charging power to minimize the total cost of operation of the fleet and the impact on the grid, while ensuring that all the buses in the fleet are able to realize their trips throughout the day and keeping the battery SoC within the constraints designated by the manufacturer. A mix of four different types of buses with different battery capacities and electric motor specifications constitute the bus fleet, and the effects that they have on charging priority are evaluated. Finally, different energy management strategies, including economy (ECO) features, such as ECO-comfort, ECO-driving, and ECO-charging, and their effects on the overall optimization are investigated. The single bus results indicate that 12 m buses have a significant battery capacity, allowing for multiple trips within their designated routes, while 18 m buses only have the battery capacity to allow for one or two trips. The fleet results for Barcelona city indicate an energy requirement of 4.42 GWh per year for a fleet of 36 buses, while for Gothenburg, the energy requirement is 5 GWh per year for a fleet of 20 buses. The higher energy requirement in Gothenburg can be attributed to the higher average velocities of the bus routes in Gothenburg, compared to those of the bus routes in Barcelona city. However, applying ECO-features can reduce the energy consumption by 15% in Barcelona city and by 40% in Gothenburg. The significant reduction in Gothenburg is due to the more effective application of the ECO-driving and ECO-charging strategies. The application of ECO-charging also reduces the average grid load by more than 10%, while shifting the charging towards non-peak hours. Finally, the optimization process results in a reduction of the total fleet energy consumption of up to 30% in Barcelona city, while in Gothenburg, the total cost of ownership of the fleet is reduced by 9%.


Author(s):  
David Mastrascusa ◽  
Patricia Vázquez‐Villegas ◽  
José Ignacio Huertas ◽  
Esther Pérez‐Carrillo ◽  
Alejandro J. García‐Cuéllar ◽  
...  

Author(s):  
Marcelo da Silva Conterato ◽  
Tiago Coelho Ferreto ◽  
Fábio Rossi ◽  
Wagner dos Santos Marques ◽  
Paulo Silas Severo de Souza

Author(s):  
Rafhael Milanezi de Andrade ◽  
Jordana Simões Ribeiro Martins ◽  
Marcos Pinotti ◽  
Antônio Bento Filho ◽  
Claysson Bruno Santos Vimieiro

This study analyses the energy consumption of an active magnetorheological knee (AMRK) actuator that was designed for transfemoral prostheses. The system was developed as an operational motor unit (MU), which consists of an EC motor, a harmonic drive and a magnetorheological (MR) clutch, that operates in parallel with an MR brake. The dynamic models of the MR brake and MU were used to simulate the system’s energetic expenditure during over-ground walking under three different working conditions: using the complete AMRK; using just its motor-reducer, to operate as a common active knee prosthesis (CAKP), and using just the MR brake, to operate as a common semi-active knee prosthesis (CSAKP). The results are used to compare the MR devices power consumptions with that of the motor-reducer. As previously hypothesized, to use the MR brake in the swing phase is more energetically efficient than using the motor-reducer to drive the joint. Even if using the motor-reducer in regenerative braking mode during the stance phase, the differences in power consumption among the systems are remarkable. The AMRK expended 16.3 J during a gait cycle, which was 1.6 times less than the energy expenditure of the CAKP (26.6 J), whereas the CSAKP required just 6.0 J.


Sign in / Sign up

Export Citation Format

Share Document