scholarly journals Understanding Deep Learning Architecture to Various Problems of Cyber Security

Author(s):  
Dr. Diwakar Ramanuj Tripathi

Abstract: Traditional machine learning has evolved into deep learning. It's capable of extracting the best feature representation from raw input samples. Intrusion detection, malware classification, Android malware detection, spam and phishing detection, and binary analysis are just a few examples of how this has been used in cyber security. Deep auto encoders, limited Boltzmann machines, recurrent neural networks, generative adversarial networks, and other DL methods are all described in this study in a brief tutorial-style method. After that, we'll go over how each of the DL methods is employed in security applications. Keywords: Machine, Cyber, Security, Architecture, Technology.

Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 122 ◽  
Author(s):  
Daniel Berman ◽  
Anna Buczak ◽  
Jeffrey Chavis ◽  
Cherita Corbett

This survey paper describes a literature review of deep learning (DL) methods for cyber security applications. A short tutorial-style description of each DL method is provided, including deep autoencoders, restricted Boltzmann machines, recurrent neural networks, generative adversarial networks, and several others. Then we discuss how each of the DL methods is used for security applications. We cover a broad array of attack types including malware, spam, insider threats, network intrusions, false data injection, and malicious domain names used by botnets.


2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Karim Armanious ◽  
Tobias Hepp ◽  
Thomas Küstner ◽  
Helmut Dittmann ◽  
Konstantin Nikolaou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document