scholarly journals Examples on Simulation Model

Author(s):  
Pooja B

Abstract: A new methodology was developed Further real-time determination gate control operations of a river-reservoir system to minimize flooding conditions. The methodology is based upon an optimization-simulation model approach interfacing the genetic algorithm within simulation software for short-term rainfall forecasting, rainfall–runoff modeling (HEC-HMS), and a one-dimensional (1D), two-dimensional (2D), and combined 1D and 2D combined unsteady flow models (HEC-RAS). Both realtime rainfall data from next-generation radar (NEXRAD) and gaging stations, and forecasted rainfall are needed to make gate control decisions (reservoir releases) in real-time so that at timet, rainfall is known and rainfall over the future timeperiod(∆t)totimet+ ∆t can be forecasted. This new model can be used to manage reservoir release schedules (optimal gate operations) before, during, and after a rainfall event. Through real-time observations and optimal gate controls, downstream water surface elevations are controlled to avoid exceedance of threshold flood levels at target locations throughout a riverreservoir system to minimize the damage. In an example application, an actual river reach with a hypothetical upstream flood control reservoir is modeled in real-time to test the optimization-simulation portion of the overall model. Keywords: Simulation – Random numbers- Steps for simulation – Problems.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1207
Author(s):  
Hasan Albo-Salih ◽  
Larry Mays

A new methodology was developed for the real-time determination gate control operations of a river-reservoir system to minimize flooding conditions. The methodology is based upon an optimization-simulation model approach interfacing the genetic algorithm within MATLAB with simulation software for short-term rainfall forecasting, rainfall–runoff modeling (HEC-HMS), and a one-dimensional (1D), two-dimensional (2D), and combined 1D and 2D combined unsteady flow models (HEC-RAS). Both real-time rainfall data from next-generation radar (NEXRAD) and gaging stations, and forecasted rainfall are needed to make gate control decisions (reservoir releases) in real-time so that at time t, rainfall is known and rainfall over the future time-period (Δt) to time t + Δt can be forecasted. This new model can be used to manage reservoir release schedules (optimal gate operations) before, during, and after a rainfall event. Through real-time observations and optimal gate controls, downstream water surface elevations are controlled to avoid exceedance of threshold flood levels at target locations throughout a river-reservoir system to minimize the damage. In an example application, an actual river reach with a hypothetical upstream flood control reservoir is modeled in real-time to test the optimization-simulation portion of the overall model.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 87
Author(s):  
Hasan Albo-Salih ◽  
Larry W. Mays ◽  
Daniel Che

An application is presented of a new methodology for the real-time operations of river-reservoir systems. The methodology is based upon an optimization/simulation modeling approach that interfaces optimization with a one and/or two-dimensional unsteady flow simulation model (U.S. Army Corps of Engineers HEC-RAS). The approach also includes a model for short-term rainfall forecasting, and the U.S. Army Corps of Engineers HEC-HMS model for rainfall-runoff modeling. Both short-term forecasted rainfall in addition to gaged streamflow data and/or NEXRAD (Next-Generation Radar) can be implemented in the modeling approach. The optimization solution methodology is based upon a genetic algorithm implemented through MATLAB. The application is based upon the May 2010 flood event on the Cumberland River system in the USA, during which releases from Old Hickory dam caused major flooding in the downstream area of Nashville, TN, USA, and allowed the dam to be placed in an emergency operational situation. One of the major features of the modeling effort and the application presented was to investigate the use of different unsteady flow modeling approaches available in the HEC-RAS, including one-dimensional (1D), two-dimensional (2D), and the combined (1D/2D) approach. One of the major results of the application was to investigate the use the different unsteady flow approaches in the modeling approach. The 2D unsteady flow modeling, based upon the diffusion wave approach, was found to be superior for the application to the Cumberland River system. The model application successfully determined real-time operations that would have maintained the flood water surface elevations at the downstream control point in Nashville below the 100-year return period river water surface and maintaining the gate openings at the Old Hickory Dam from reaching an emergency operational situation, which could have caused major losses at the dam.


2020 ◽  
Vol 10 (12) ◽  
pp. 4079 ◽  
Author(s):  
Manouchehr Mohammadi ◽  
Roope Eskola ◽  
Aki Mikkola

Real-time simulation models based on multibody system dynamics can replicate reality with high accuracy. As real-time models typically describe machines that interact with a complicated environment, it is important to have an accurate environment model in which the simulation model operates. Photogrammetry provides a set of tools that can be used to create a three-dimensional environment from planar images. A created environment and a multibody-based simulation model can be combined in a Unity environment. This paper introduces a procedure to generate an accurate spatial working environment based on an existing real environment. As a numerical example, a detailed environment model is created from a University campus area.


Author(s):  
Yong-Gun Kim ◽  
Myong-Bong Jo ◽  
Pyol Kim ◽  
Song-Nam Oh ◽  
Chung-Hyok Paek ◽  
...  

2019 ◽  
Vol 8 (2S11) ◽  
pp. 4043-4046

Objectives: DLR’s real-time Human-in-the-Loop Space Flight Simulator needed an enhancement in its transonic and supersonic behavior for its advanced concept of a suborbital, hypersonic, winged passenger transport called SpaceLiner. Methods/Statistical analysis: A simulation model has been developed by geometry modeled flight dynamics for the commercial flight simulation software “X-Plane”. The presented solution is based on a real-time flight dynamics corrector application, taking table-based aerodynamic coefficients from Computational Fluid Dynamics (CFD) model experiments to overwrite X-Plane’s internal flight dynamics in the supersonic and hypersonic regime. Findings: Although compressible flow effects are considered using Prandtl-Glauert, the SpaceLiner X-Plane simulation model needed deeper investigation in its transonic and supersonic behavior, taking into account that transonic effects in X-Plane only refer to an empirical mach-divergent drag increase and the airfoil becomes an appropriate thickness ratio diamond shape under supersonic conditions. Whereas the X-Plane internal flight simulation engine delivers a high level of realism under subsonic conditions, significant deviations from the SpaceLiner aerodynamic reference database were identified in the supersonic and hypersonic regimes. An improved accuracy could be observed for two Mach test cases under corrector application usage conditions. Using X-Plane on the one hand and covering a constant accuracy throughout the whole range of regimes, subsonic, supersonic and hypersonic on the other hand, can be achieved by using the presented corrector application solution. Application/Improvements: X-Plane’s wireframe model approach was successfully fused with table-based lookup processing, delivering a constant high level of realism throughout the whole Mach range.


2014 ◽  
Vol 5 (2) ◽  
pp. 50-61 ◽  
Author(s):  
Abderaouf Benghalia ◽  
Mustapha Oudani ◽  
Jaouad Boukachour ◽  
Dalila Boudebous ◽  
Ahmed El Hilali Alaoui

This paper proposes a simulation model to analyze the handling and the transfer system of containers in Le Havre seaport. The decision variables of simulation are determined by using the CPLEX optimization software. The goal is to determine the least expensive strategy for the transfer of a set of containers between container terminals. The simulation model is developed using an object-oriented approach and Flexsim CT simulation software. The objective is to obtain an efficient operating process for the multimodal terminal of Le Havre which is an intermediate platform for transferring containers (collection and delivery) by rail and river (trains and barges). The goal is to evaluate the performance of the containers transfer by rail shuttles between the future multimodal terminal and the maritime terminals. The aim is to analyze and to evaluate performance indicators of port logistics chain (costs, resource occupancy rate, service rate), and to test several management strategies.


Sign in / Sign up

Export Citation Format

Share Document