An Efficient Artificial Neural Network for Coronary Heart Disease Prediction

Author(s):  
Priyam Vinay Sheta

Abstract: Coronary heart disease is rapidly increasing over these days also with a significant number of deaths. A large population around the world is suffering from the disease. When surveys were carried out of the death rate and the number of people suffering from the coronary heart disease, it was understood that how important is the diagnosis of this disease at an early stage. The old way for detecting the disease was not found effective. This paper suggests a different method and technology to detect the disease and the proposed method is more effective than the old traditional methods. In this paper, an artificial neural network that predicts the coronary heart disease is used with 14 features as the input. Feature selection, data preprocessing, and removing irrelevant data was done before training the neural network. The backpropagation algorithm was used for making the neural network learn the features. The output of data was basically binary but the neural network was trained to give the output as a probability between 0 and 1. Two algorithms were proposed for this prediction named Logistic Regression and Artificial Neural Network but the later was selected because of the accuracy of 94%. The accuracy of Logistic Regression was 87%.

Author(s):  
Wiharto Wiharto ◽  
Harianto Herianto ◽  
Hari Kusnanto

<p>The assessment model of coronary heart disease is so much developed in line with the development of information technology, particularly the field of artificial intelligence. Unfortunately, the assessment models developed mostly do not use such an approach made by the clinician, the tiered approach. This study aims to analyze the performance of a tiered model assessment. The method used for each level is, preprocessing, building architecture artificial neural network (ANN), conduct training using the Levenberg-Marquardt algorithm and one step secant, as well as testing the system. The study is divided into the terms of the stages in the examination procedure. The test results showed the influence of each level, both when the output level of the previous positive or negative, were tested back at the next level. The performance evaluation may indicate that the top level provides performance improvement and or reinforce the previous level. </p>


Author(s):  
Sudarshan Nandy ◽  
Mainak Adhikari ◽  
Venki Balasubramanian ◽  
Varun G. Menon ◽  
Xingwang Li ◽  
...  

2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


Author(s):  
W. Abdul Hameed ◽  
Anuradha D. ◽  
Kaspar S.

Breast tumor is a common problem in gynecology. A reliable test for preoperative discrimination between benign and malignant breast tumor is highly helpful for clinicians in culling the malignant cells through felicitous treatment for patients. This paper is carried out to generate and estimate both logistic regression technique and Artificial Neural Network (ANN) technique to predict the malignancy of breast tumor, utilizing Wisconsin Diagnosis Breast Cancer Database (WDBC). Our aim in this Paper is: (i) to compare the diagnostic performance of both methods in distinguishing between malignant and benign patterns, (ii) to truncate the number of benign cases sent for biopsy utilizing the best model as an auxiliary implement, and (iii) to authenticate the capability of each model to recognize incipient cases as an expert system.


Sign in / Sign up

Export Citation Format

Share Document