An Efficient Artificial Neural Network for Coronary Heart Disease Prediction
Abstract: Coronary heart disease is rapidly increasing over these days also with a significant number of deaths. A large population around the world is suffering from the disease. When surveys were carried out of the death rate and the number of people suffering from the coronary heart disease, it was understood that how important is the diagnosis of this disease at an early stage. The old way for detecting the disease was not found effective. This paper suggests a different method and technology to detect the disease and the proposed method is more effective than the old traditional methods. In this paper, an artificial neural network that predicts the coronary heart disease is used with 14 features as the input. Feature selection, data preprocessing, and removing irrelevant data was done before training the neural network. The backpropagation algorithm was used for making the neural network learn the features. The output of data was basically binary but the neural network was trained to give the output as a probability between 0 and 1. Two algorithms were proposed for this prediction named Logistic Regression and Artificial Neural Network but the later was selected because of the accuracy of 94%. The accuracy of Logistic Regression was 87%.