scholarly journals Investigating a Conserved Role for BLADE-ON-PETIOLE and Class I TGA bZIP Transcription Factors in Regulation of Inflorescence Architecture and Lignin Biosynthesis in Arabidopsis thaliana and Populus Trichocarpa

2014 ◽  
Author(s):  
Bhaswati Devi
2020 ◽  
Vol 71 (18) ◽  
pp. 5438-5453
Author(s):  
Alejandra Camoirano ◽  
Agustín L Arce ◽  
Federico D Ariel ◽  
Antonela L Alem ◽  
Daniel H Gonzalez ◽  
...  

Abstract Trichomes and the cuticle are two specialized structures of the aerial epidermis that are important for plant organ development and interaction with the environment. In this study, we report that Arabidopsis thaliana plants affected in the function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15 show overbranched trichomes in leaves and stems and increased cuticle permeability. We found that TCP15 regulates the expression of MYB106, a MIXTA-like transcription factor involved in epidermal cell and cuticle development, and overexpression of MYB106 in a tcp14 tcp15 mutant reduces trichome branch number. TCP14 and TCP15 are also required for the expression of the cuticle biosynthesis genes CYP86A4, GPAT6, and CUS2, and of SHN1 and SHN2, two AP2/EREBP transcription factors required for cutin and wax biosynthesis. SHN1 and CUS2 are also targets of TCP15, indicating that class I TCPs influence cuticle formation acting at different levels, through the regulation of MIXTA-like and SHN transcription factors and of cuticle biosynthesis genes. Our study indicates that class I TCPs are coordinators of the regulatory network involved in trichome and cuticle development.


2012 ◽  
Vol 71 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Ziyu Li ◽  
Bin Li ◽  
Wen-Hui Shen ◽  
Hai Huang ◽  
Aiwu Dong

2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Author(s):  
Fanella Zamcho ◽  
Aaron Newborn ◽  
Ayesha Karamat ◽  
Rouzbeh Tehrani ◽  
Nancy Pleshko ◽  
...  

Gene ◽  
2017 ◽  
Vol 626 ◽  
pp. 386-394 ◽  
Author(s):  
Yulin Fang ◽  
Dianguang Xiong ◽  
Longyan Tian ◽  
Chen Tang ◽  
Yonglin Wang ◽  
...  

2010 ◽  
Vol 27 (8) ◽  
pp. 1509-1531 ◽  
Author(s):  
Zohar Ben-Moshe ◽  
Gad Vatine ◽  
Shahar Alon ◽  
Adi Tovin ◽  
Philipp Mracek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document