scholarly journals KAJIAN Pergerakan kendaraan belok kiri langsung dan lurus langsung pada simpang bersinyal

2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Khoirul Abadi ◽  
Imam Muryanto ◽  
Hermin Eka Wijayanti

Setting the left turn movement at the intersection of four or three signalized intersections, and the straight movements at three signalized intersections. In any where, there are not provide significant for signalized intersection performance. Changes related legislation does not necessarily contribute positively to the traffic operation. Determination of the application of left turn on red  (LTOR) or straight on red (STOR) at an intersection must be preceded by a study, so that the positive affect or negative affect that happened can be known early. The background of this study was motivated the existing conditions arrangement, turn left movements (for intersection of four or three signalized intersections) and straight movements (for three signalized intersections) at some intersection in Malang Raya. In addition, this study was conducted in order to know the effect of setting the movement of vehicles turning left or straight at the intersection. The expected benefits of this study is, that every movement settings, turn left at the intersection of four or three signalized intersections, and also straight movements at three signalized intersections have to go through the review process. Conclusion, shows that the movement of vehicles turning left directly on the intersection of four or three signalized intersections, and the movement of vehicles at the intersection of three straight directly affect the performance of signalized intersections.Key words: signalized intersection, turn left movement, straight movement, the performance of a signalized intersection.

Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


Author(s):  
Daniel J. Cook

Along urban and suburban arterials, closely-spaced signalized intersections are commonly used to provide access to adjacent commercial developments. Often, these signalized intersections are designed to provide full access to developments on both sides of the arterial and permit through, left-turn, and right-turn movements from every intersection approach. Traffic signal timing is optimized to reduce vehicle delay or provide progression to vehicles on the arterial, or both. However, meeting both of these criteria can be cumbersome, if not impossible, under high-demand situations. This research proposes a new design that consolidates common movements at three consecutive signalized intersections into strategic fixed locations along the arterial. The consolidation of common movements allows the intersections to cycle between only two critical phases, which, in turn, promotes shorter cycle lengths, lower delay, and better progression. This research tested the consolidated intersection concept by modeling a real-world site in microsimulation software and obtaining values for delay and travel time for multiple vehicle paths along the corridor and adjacent commercial developments in both existing and proposed conditions. With the exception of unsignalized right turns at the periphery of the study area, all non-displaced routes showed a reduction in travel time and delay. Additional research is needed to understand how additional travel through the commercial developments adjacent to the arterial may effect travel time and delay. Other expected benefits of the proposed design include a major reduction in conflict points, shorter pedestrian crossing and wait times, and the opportunity to provide pedestrian refuge areas in the median.


Author(s):  
Kiriakos Amiridis ◽  
Nikiforos Stamatiadis ◽  
Adam Kirk

The efficient and safe movement of traffic at signalized intersections is the primary objective of any signal-phasing and signal-timing plan. Accommodation of left turns is more critical because of the higher need for balancing operations and safety. The objective of this study was to develop models to estimate the safety effects of the use of left-turn phasing schemes. The models were based on data from 200 intersections in urban areas in Kentucky. For each intersection, approaches with a left-turn lane were isolated and considered with their opposing through approach to examine the left-turn–related crashes. This combination of movements was considered to be one of the most dangerous in intersection safety. Hourly traffic volumes and crash data were used in the modeling approach, along with the geometry of the intersection. The models allowed for the determination of the most effective type of left-turn signalization that was based on the specific characteristics of an intersection approach. The accompanying nomographs provide an improvement over existing methods and warrants and allow for a systematic and quick evaluation of the left-turn phase to be selected. The models used the most common variables that were already known during the design phase, and they could be used to determine whether a permitted or protected-only phase would suit the intersection when safety performance was considered.


2020 ◽  
Vol 6 (1) ◽  
pp. 186-193 ◽  
Author(s):  
Fulu Wei ◽  
Long Chen ◽  
Yongqing Guo ◽  
Mingtao Chen ◽  
Jiaxiang Ma

In order to enrich the car-following theory of urban signalized intersections, and reveal the car-following characteristics of left turn at signalized intersections, the car-following behavior of left turn at signalized intersections is studied. The car-following data acquisition test which was based on high precision GPS was designed. And the car-following characteristics of left-turning vehicles at signalized intersections with different turning radii were analyzed. Based on which, the influence of radius on the car-following behavior was explained, and the New Full Velocity Difference (NFVD) model was developed. The genetic algorithm was used to calibrate the parameters of the NFVD model. The stability and accuracy of the calibrated model was further analyzed by using field data. The results showed that the average speed of the following car increases with the turning radius of the signalized intersection; the car-following speed which the highest frequency occurs under different turning radii tends to increase with the enlargement of turning radius; the larger the average headway distance between the car-following vehicles, the more intense of the driver’s response to the deceleration of the front vehicle. These findings could be used in traffic simulation and to make engineering decisions.


Transport ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Ali Payidar Akgüngör

Delay is an important factor in the optimization of traffic signals and the determination of the level of service of a signalized intersection. This paper proposes a methodology and a new formulation to identify the delay parameter in signalized intersection delay models. In this study, the delay parameter is modeled as a function of analysis period instead of a fixed value used by the existing delay models. Therefore, the proposed delay model including new delay parameter can produce more reasonable delay estimations at signalized intersections for variable time periods. A comparative study of the proposed time‐dependent model against the existing four different models was performed to present the improvements in this model.


Author(s):  
Mark R. Virkler ◽  
Murli Adury Krishna

The capacity for right turns into gaps at signalized intersections, through right turn on red (RTOR) and free rights (with yield control), is examined. Current treatments provided by the Highway Capacity Manual (HCM), SIDRA, and a stop sign analogy (SSA) are examined. An adjustment to the SSA to eliminate capacity from gaps greater than the unsaturated flow period of the conflicting traffic is then described. The capacity for right turns into gaps is measured through a field study of seven right-turn-only lanes. The measured capacities are then compared with predicted capacities from the SSA and the adjusted stop sign analogy (ASSA). The data indicate that the HCM procedure to estimate RTOR volumes may not properly estimate those volumes. The SSA procedure tends to overestimate right-turn capacity by ignoring the effect of short phase lengths. The ASSA procedure provides lower estimates of capacity than the SSA, but may underestimate capacity. The results of the study can significantly increase the accuracy and usefulness of signalized intersection analysis by helping to answer questions about right-turn capacity, which now cannot be adequately addressed.


Author(s):  
Craig Lyon ◽  
Anwar Haq ◽  
Bhagwant Persaud ◽  
Steven T. Kodama

This paper describes the development of safety performance functions (SPFs) for 1,950 urban signalized intersections on the basis of 5 years of collision data in Toronto, Ontario, Canada. Because Toronto has one of the largest known, readily accessible, urban signalized intersection databases, it was possible to develop reliable, widely applicable SPFs for different intersection classifications, collision severities, and impact types. Such a comprehensive set of SPFs is not available for urban signalized intersections from data for a single jurisdiction, despite the considerable recent interest in use of these functions for analyses related to network screening, and the development, prioritization, and evaluation of treatments. The application of a straightforward recalibration process requiring relatively little data means that the SPFs calibrated can be used by researchers and practitioners for other jurisdictions for which these functions do not exist and are unlikely to exist for some time. The value of the functions is illustrated in an application to evaluate a topical safety measure—left-turn priority treatment for which existing knowledge is on a shaky foundation. The results of this empirical Bayes evaluation show that this treatment is quite effective for reducing collisions, particularly those involving left-turn side impacts.


2012 ◽  
Vol 209-211 ◽  
pp. 930-933 ◽  
Author(s):  
Chun Xiao Liu ◽  
Guo Zhu Cheng ◽  
Ya Ping Zhang

In order to evaluate traffic operation status of signalized intersection in slight snowy weather, it was studied that the influence of slight snow on capacity and level of service (LOS) of signalized intersection. Data of timing, vehicle’s starting loss time, saturated headway of straight vehicle and delay of one signalized intersections in sunny and slight snowy weather were observed by video method. Stop-line method was adopted to calculate the capacity of signalized intersection and LOS was evaluated by American standard. It showed that capacity of signalized intersection decreased by 7% and LOS declined one level in slight snowy weather compared with on sunny weather.


Author(s):  
Ray Saeidi Razavi ◽  
Peter G. Furth

At signalized intersections, permitted left turns (i.e., on a green ball, after yielding) across multiple through lanes and across a separated bike lane or bike path present a threat to bicyclist safety. A conflict study of two such intersections with a bidirectional bike path found that when cyclists cross while a vehicle is ready to turn left and there is no opposing through traffic to block it, the chance of the left-turning motorist yielding safely was only 9%, and the chance of their yielding at all—including yielding only after beginning the turn, then stopping in the opposing through lanes—was still only 37%. Motorist non-yielding rates were worse toward bikes arriving during green, toward bikes approaching from the opposite direction (i.e., riding on the right side of the road), and toward bikes facing a queue with multiple left turning vehicles. Of 112 cyclists who arrived on green when there was at least one left-turning car, but no opposing through traffic blocking it, 73 had to slow or stop to avoid a collision. Although these conflicts could be essentially eliminated using protected-only left turn phasing (turn on green arrow), common existing criteria prefer permitted left turns to reduce vehicular delay. A case study shows how, by considering multiple signalization alternatives, it can be possible to convert left turns to protected-only phasing without imposing a substantial delay burden on vehicles or other road users.


Sign in / Sign up

Export Citation Format

Share Document