right turns
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhigang Yu ◽  
Ying Chen ◽  
Xiaobo Zhang ◽  
Jin Xu

Hairpin curves are often employed in alignment layout and an important feature that identifies dangerous driving conditions for mountain roads. However, driving behaviors at hairpin curves remain ambiguous. Field driving tests were conducted in this study on one two-lane mountain road with 11 hairpin curves. Vehicle-mounted equipment was utilized to collect track and lateral distance between the wheels and the lane markings under naturally driving conditions. Track morphology and patterns, risks, and road crash mechanisms were analyzed. The main findings are as follows. Curve cutting was a typical method for negotiating hairpin curves, was observed for left and right turns, and can be classified into three types based on the location of the cutting point, namely, cutting at curve entry, cutting at curve middle, and cutting at curve exit. Based on the lateral positional relationships between tracks and lane markings, six track patterns are determined for left turns and four track patterns for right turns. When passing a right turn by cutting the curve, a driver occupied the right shoulder of the turn; therefore, there is a risk of colliding with the mountain or the guardrail. When making a left turn into hairpin curves, a driver occupied the right shoulder on curve exit, resulting in running off the road or colliding with the guardrail. More than 70% and 60% of drivers occupied the opposite lane when turning right and turning left, respectively, into a hairpin turn, which led to intertwining between the tracks in the two driving directions and therefore a risk of potential collisions.


2021 ◽  
Author(s):  
Joshua Gross

We look at the relatively unexplored problem of plan recognition applied to motion in 2-D environments where all moving objects are modelled as circles. Golog is a well-known high level logical language for solving planning problems and specifying agent controllers. Few studies have applied Golog to plan recognition. We use some of the features of this language, but its standard interpreter is adapted to solving plan recognition problems. This thesis makes several other contributions. First, plan recognition procedures are formulated as finite automata and expressed as Golog programs. Second, we elaborate a logical formalism for reasoning about depth and motion from an observer's viewpoint. We not only expand on this situation calculus based formalism, but also apply it to tackle plan recognition problems in the traffic domain. The proposed approach is implemented and thoroughly tested on recognizing simple behaviours such as left turns, right turns, and overtaking.


2021 ◽  
Author(s):  
Joshua Gross

We look at the relatively unexplored problem of plan recognition applied to motion in 2-D environments where all moving objects are modelled as circles. Golog is a well-known high level logical language for solving planning problems and specifying agent controllers. Few studies have applied Golog to plan recognition. We use some of the features of this language, but its standard interpreter is adapted to solving plan recognition problems. This thesis makes several other contributions. First, plan recognition procedures are formulated as finite automata and expressed as Golog programs. Second, we elaborate a logical formalism for reasoning about depth and motion from an observer's viewpoint. We not only expand on this situation calculus based formalism, but also apply it to tackle plan recognition problems in the traffic domain. The proposed approach is implemented and thoroughly tested on recognizing simple behaviours such as left turns, right turns, and overtaking.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jan Ogrin ◽  
Nejc Šarabon ◽  
Mads Kjær Madsen ◽  
Uwe Kersting ◽  
Hans-Christer Holmberg ◽  
...  

The ground reaction forces (GRF) associated with competitive alpine skiing, which are relatively large, might be asymmetric during left and right turns due to asymmetries in the strength of the legs and torso and the present investigation was designed to evaluate this possibility. While skiing a symmetrical, 20-gate slalom course, the asymmetries of 9 elite alpine skiers were calculated on the basis of measurements provided by inertial motion units (IMU), a Global Navigation Satellite System and pressure insoles. In addition, specialized dynamometers were utilized to assess potential asymmetry in the strength of their legs and torso in the laboratory. In total, seven variables related to GRF were assessed on-snow and eight related to strength of the legs and torso in the laboratory. The asymmetries in these parameters between left and right turns on snow were expressed in terms of the symmetry (SI) and Jaccard indices (JI), while the asymmetries between the left and right sides of the body in the case of the laboratory measurements were expressed as the SIs. The three hypotheses to be tested were examined using multivariable regression models. Our findings resulted in rejection of all three hypotheses: The asymmetries in total GRF (H1), as well as in the GRF acting on the inside and outside legs (H2) and on the rear- and forefeet GRF (H3) during left and right turns were not associated with asymmetries in parameters related to muscular strength. Nevertheless, this group of elite slalom skiers exhibited significant asymmetry between their right and left legs with respect to MVC during ankle flexion (0.53 ± 0.06 versus 0.60 ± 0.07 Nm/kg, respectively) and hip extension (2.68 ± 0.39 versus 2.17 ± 0.26 Nm/kg), as well as with respect to the GRFs on the inside leg while skiing (66.8 ± 7.39 versus 76.0 ± 10.0 %BW). As indicated by the JI values, there were also large asymmetries related to GRF as measured by pressure insoles (range: 42.7–56.0%). In conclusion, inter-limb asymmetries in GRFs during elite alpine skiing are not related to corresponding asymmetries in muscular strength. Although our elite athletes exhibited relatively small inter-limb asymmetries in strength, their asymmetries in GRF on-snow were relatively large.


2021 ◽  
Author(s):  
Abdullah Jalal Nafakh ◽  
Yunchang Zhang ◽  
Sarah Hubbard ◽  
Jon D. Fricker

This research explores the benefits of a pedestrian crosswalk that is physically displaced from the intersection, using simulation software to estimate the benefits in terms of delay and pedestrian travel time. In many cases, the displaced pedestrian crossing may provide benefits such as reduced vehicle delay, reduced crossing distance, increased opportunity for signal progression, and reduced conflicts with turning vehicles. The concurrent pedestrian service that is traditionally used presents potential conflicts between pedestrians and three vehicular movements: right turns, permissive left turns, and right turns on red. The findings of this research suggest that a displaced pedestrian crossing should be considered as an option by designers when serving pedestrians crossing multi-lane arterials. In addition to reduced delay, pedestrian safety may be improved due to the shorter crossing distance, the elimination of conflicts with turning vehicles, and the potential for high driver compliance rates associated with signals, such as pedestrian hybrid beacons.


Author(s):  
Peter G. Furth ◽  
Ray (Mohammad) Saeidi Razavi

When pedestrian, bike crossings, or both are concurrent with a vehicular phase, leading through intervals (LTI) and leading pedestrian intervals (LPI) are signalization techniques that provide a partially protected crossing. With LPI, for a short interval at the start of the crossing phase all traffic is held, enabling some pedestrians to arrive at the conflict zone and thus reinforce their priority before turning vehicles are released. LTI functions similarly except that during the leading interval only turning traffic is held; through traffic is allowed to run. This lessens the negative effect on capacity of LPI, and consequently allows LTI to have a longer leading interval, thus affording pedestrians and cyclists greater protection. Experience of LTI in the cities of Montreal, New York, and Charlotte is reviewed. A model is developed to estimate capacity loss from using LPI and LTI for a range of scenarios in which right turns share a lane with through traffic, in which case LTI can indirectly block through vehicles positioned behind a turning vehicle. While LTI’s capacity loss increases with the proportion of right turns, for the wide range of right turn proportions tested, it is still far lower than the capacity loss for an LPI of the same length, especially on multilane approaches.


Author(s):  
Hisham Jashami ◽  
David S. Hurwitz ◽  
Christopher Monsere ◽  
Sirisha Kothuri

This research explored driver comprehension and behaviors in Oregon with respect to right-turn signal displays focusing on the Flashing Yellow Arrow (FYA) in a driving simulator. A counterbalanced, factorial design was chosen to explore three independent variables: signal indication type and active display, length of the right-turn bay, and presence of pedestrians. Driver decision-making and visual attention were considered. Data were obtained from 46 participants (21 women, 25 men) turning right 736 times in 16 experimental scenarios. A Mixed-effects Ordered Probit Model and a Linear mixed model were used to examine the influence of driver demographics on observed performance. Results suggest that the FYA indication improves driver comprehension and behavioral responses to the permissive right-turn condition. When presented with the FYA indication in the presence of pedestrians, nearly all drivers exhibited caution while turning and yielding to pedestrians and stopping when necessary. For the same turning maneuver, drivers presented with a circular green (CG) indication were less likely to exhibit correct behavior. At least for Oregon drivers, another clear finding was a general lack of understanding of the steady red arrow (SRA) display for right turns. Most drivers assume the SRA indication requires a different response than the circular red (CR) and remain stopped during the entire red interval, thus resulting in efficiency losses. These findings suggest that transportation agencies could potentially improve driver yielding behavior and pedestrian safety at signalized intersections with high volumes of permissive right turns from exclusive right-turn lanes by using the FYA display in lieu of a steady CG display.


2018 ◽  
Vol 30 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Yohei Fujinami ◽  
Pongsathorn Raksincharoensak ◽  
Dirk Ulbricht ◽  
Rolf Adomat ◽  
◽  
...  

Most traffic accidents that result in injuries or fatalities occur in intersections. In Japan, where cars drive on the left, most of such accidents involve cars that are turning right. This situation serves as the basis of the development of our Advanced Driver Assistance System (ADAS) for intersection right turns. This research focuses on the scenario in which an object darts out from the blind spot created by heavy oncoming traffic as a vehicle is making an intersection right turn. When this happens, even if the driver brakes as hard as possible or an active safety function such as the Autonomous Emergency Braking System (AEBS) applies the brakes, the natural limits of physical friction may make it impossible to avoid a collision. To improve traffic safety given the limited potential of physical friction, this research seeks to develop a risk-predictive right-turn assistance system. The system predicts potential oncoming objects and reduces the vehicle velocity in advance. Blind corners can be detected by on-board sensors without requiring information from surrounding infrastructure. This paper presents a right-turn assistance system that avoids conflict with the AEBS in emergencies by decelerating the ego vehicle to a safe velocity.


Sign in / Sign up

Export Citation Format

Share Document