Formulation and Characterization of Ketorolac Tromethamine Nanoparticle with Eudragit RS-100 and RL-100 by Nano precipitation Method

2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


2012 ◽  
Vol 531-532 ◽  
pp. 250-253 ◽  
Author(s):  
Hong Quan Zhang ◽  
Ming Zhang ◽  
Lu Wei Fu ◽  
Yu Ning Cheng

Zn or Mg ions doped hydroxyapatite (HA) particles were successfully developed by introducing various concentration of Zn or Mg in the starting solution using wet chemical precipitation method and followed a hydrothermal treatment. The products were identified as HA by XRD and FTIR, and the precipitated particles had a rod-like morphology. All the products for Mg and Zn ions concentration in the preparation solution less than 40 mol% were identified as HA. Substitution of Mg and Zn in HA crystal would impair the crystallization of HA and significantly reduce the length of a, c values of HA unit cell, which clearly demonstrated that Mg or Zn ions were structurally incorporated into the apatite crystals, they were not just absorbed on the surface of crystals.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2017 ◽  
Vol 43 (15) ◽  
pp. 12120-12125 ◽  
Author(s):  
S.A.N.H. Lavasani ◽  
O. Mirzaee ◽  
H. Shokrollahi ◽  
A.K. Moghadam ◽  
M. Salami

2019 ◽  
Vol 32 (1) ◽  
pp. 1-6
Author(s):  
Nikita Verma

As a disease skin cancer has obtained different characteristics over the decades. Solar radiation that contains ultraviolet ray is the prime cause of skin cancer. In this present research, the nano-precipitation method was applied for preparing Quercetin loaded Nanoparticle (Qu-Nps) with much enhanced loading properties and improves incorporation of corresponding drugs. At the same time, the Quadratic model that takes help of the Response Surface Method was applied to observe the effects of some specific parameters maintained in the development of nanoparticle. Here, the sonication time was 20 min and delivery system F6 (with Drug: Polymer ratio of 1:45) provided optimum drug entrapment ability which is 70%. The optimized formulation for average size was almost 102.39 ±7.64 nm with zeta potential diameter averaging -28.43mV. Quercetin is a dietary flavonoid possessing multidimensional properties that is used in various other diseases including viral infection, bacterial infection, diabetes mellitus, and cancer. All outcomes support the view that Quercetin loaded nanoparticles (Qu-Nps) has high entrapment and drug loading abilities.


2018 ◽  
Vol 930 ◽  
pp. 48-52
Author(s):  
Eliana dos Santos Câmara-Pereira ◽  
Ana Emília Holanda Rolim ◽  
Isabela Cerqueira Barreto ◽  
Laise Monteiro Campos Moraes ◽  
Lilian Campos ◽  
...  

Some biomaterials can be used to promote tissue repair process. The biological substitutes (biomaterials such as hydroxyapatite beads) can be used with some advantages and purpose of mimicking responses to on-site repair of the injured bone. The objective of this study was to evaluate the osteogenic potential of the biomaterial composed of hydroxyapatite and alginate in place of the critical defect. bioceramic samples stoichiometric hydroxyapatite was produced by the precipitation method, wet method with ion molar ratio of Ca 10 (PO 4) 6 (OH) 2, in which the Ca / P ratio was equal to 1.67. The reaction conditions were favorable to the composition of a biomaterial with crystalline phase. The synthesis of the biomaterial composed of hydroxyapatite and alginate microspheres (HAAlg5%; 200 ø 425mm) was obtained from two primary solutions with the aim of, in optimal reactive conditions, to form the precipitate. After synthesis the microspheres were implanted into the defect site. The potential effects of using HAAlg5% and the application of vibratory waves in the critical defect repair were unknown and the results described in this study are promising, considering the systemic therapy and at the site of injury. The biomaterial used promoted repair the injured tissue.


2013 ◽  
Author(s):  
D. Balaji ◽  
D. Thangaraju ◽  
A. Durairajan ◽  
S. Moorthy Babu

2009 ◽  
Vol 609 ◽  
pp. 189-194 ◽  
Author(s):  
C. Benmouhoub ◽  
A. Kadri ◽  
N. Benbrahim ◽  
S. Hadji

Nanoparticles of cerium oxide (CeO2) are synthesized with cerium (III) nitrates (Ce(NO3)3, 6H2O) by precipitation method in ammonium hydroxyl solution (NH4OH). The influence of several parameters such as nature of the solvent, synthesizing temperature and the calcination on the crystallite size is studied by XRD, TEM and BET methods. The results show that both calcinations and synthesizing temperature affect the particles size. Also, the nature of solvent has a great effect on the morphology of CeO2 nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document