scholarly journals Development of a Fast and Effective Solution for On-Site Building Envelope Installation

Author(s):  
Wen Pan ◽  
Thomas Bock ◽  
Thomas Linner ◽  
Kepa Iturralde
2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2019 ◽  
pp. 10-15
Author(s):  
I.L. SHUBIN ◽  
◽  
N.P. UMNYAKOVA ◽  
I.V. MATVEEVA ◽  
K.A. ANDRIANOV ◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2010 ◽  
Vol 30 (11) ◽  
pp. 2965-2966 ◽  
Author(s):  
Zhao-xia ZHANG ◽  
Yao-jun LIU
Keyword(s):  

2018 ◽  
Vol 69 (9) ◽  
pp. 2416-2419
Author(s):  
Mihai Branzei ◽  
Mihai Ovidiu Cojocaru ◽  
Leontin Nicolae Druga ◽  
Florica Tudose ◽  
Roxana Trusca

Experimental research aimed to find a solution for replacing components with high toxicity (or generating such components as a result of reactions occurring in the environment at processing temperatures) from the environments used for ferritic nitrocarburising process (FNCP) with non-hazardous components, but extremely active during the process. In the temperature range in which this type of processing is applied (lower than the eutectoid transformation temperature in the Fe-N phase diagram), the most commonly used media are liquid or gaseous; liquid ones contain toxic components (sodium or potassium cyanates/cyanides), and gaseous ones require complex equipments. Packing is extremely rarely used, but in this case pack-mix contain toxic components (15 � 20 wt.% sodium or potassium ferrocyanide). Urea also called carbamide (CO (NH2)2) is the active component in the pack-mixing proposed to be used for FNCP. Carbamide is used in low temperature cyanidation thermochemical heat treatment (liquid FNC), together with sodium or potassium carbonates, resulting in very toxic reaction products (sodium or potassium cyanates). Compared to cyanidation, in the version proposed in the paper, the carbamide does not react with carbonates because they are not found in the composition of the environment but decomposes in the presence or absence of oxygen (by a disproportionation reaction) with the formation of some gas molecules interesting for the process. It has been concluded that the use of carbamide together with two other components, activated charcoal (having a triple role - dispersing, storage, surface saturation) and respectively ammonium chloride as surface reaction activator, is an effective solution for achieving the desired goals by applying this type of thermochemical processing to a wide range of products made of quality steels up to alloy miscellaneous steels.


Sign in / Sign up

Export Citation Format

Share Document