Automatic Classification of Design Conflicts Using Rule-based Reasoning and Machine Learning—An Example of Structural Clashes Against the MEP Model

2019 ◽  
Author(s):  
Ying-Hua Huang ◽  
Will Y. Lin
Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Katherine Darveau ◽  
Daniel Hannon ◽  
Chad Foster

There is growing interest in the study and practice of applying data science (DS) and machine learning (ML) to automate decision making in safety-critical industries. As an alternative or augmentation to human review, there are opportunities to explore these methods for classifying aviation operational events by root cause. This study seeks to apply a thoughtful approach to design, compare, and combine rule-based and ML techniques to classify events caused by human error in aircraft/engine assembly, maintenance or operation. Event reports contain a combination of continuous parameters, unstructured text entries, and categorical selections. A Human Factors approach to classifier development prioritizes the evaluation of distinct data features and entry methods to improve modeling. Findings, including the performance of tested models, led to recommendations for the design of textual data collection systems and classification approaches.


2021 ◽  
Vol 11 (11) ◽  
pp. 5230
Author(s):  
Isabel Santiago ◽  
Jorge Luis Esquivel-Martin ◽  
David Trillo-Montero ◽  
Rafael Jesús Real-Calvo ◽  
Víctor Pallarés-López

In this work, the automatic classification of daily irradiance profiles registered in a photovoltaic installation located in the south of Spain was carried out for a period of nine years, with a sampling frequency of 5 min, and the subsequent analysis of the operation of the elements of the installation on each type of day was also performed. The classification was based on the total daily irradiance values and the fluctuations of this parameter throughout the day. The irradiance profiles were grouped into nine different categories using unsupervised machine learning algorithms for clustering, implemented in Python. It was found that the behaviour of the modules and the inverter of the installation was influenced by the type of day obtained, such that the latter worked with a better average efficiency on days with higher irradiance and lower fluctuations. However, the modules worked with better average efficiency on days with irradiance fluctuations than on clear sky days. This behaviour of the modules may be due to the presence, on days with passing clouds, of the phenomenon known as cloud enhancement, in which, due to reflections of radiation on the edges of the clouds, irradiance values can be higher at certain moments than those that occur on clear sky days, without passing clouds. This is due to the higher energy generated during these irradiance peaks and to the lower temperatures that the module reaches due to the shaded areas created by the clouds, resulting in a reduction in its temperature losses.


Author(s):  
Alexis Falcin ◽  
Jean-Philippe Métaxian ◽  
Jérôme Mars ◽  
Éléonore Stutzmann ◽  
Jean-Christophe Komorowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document