scholarly journals Does landscape factors drive the genetic diversity and structure of populations of fruit flies, Senegal? Exploratory study of the case of Bactrocera dorsalis (Hendel, 1912) in the Niayes, Senegal

2021 ◽  
Vol 9 (6) ◽  
pp. 47-52
Author(s):  
Ibrahima Diallo ◽  
Awa Ndiaye ◽  
Emile Faye ◽  
Mariama Faye ◽  
Mbacke Sembene
2018 ◽  
Vol 5 (3) ◽  
Author(s):  
Yulia Pujiastuti

The objective of the research were to investigate level parasitization, immature development period, longevity of adult parasitoids, along with number of progeny and parasitoid sex of Psyttalia sp. attacking larvae of Bactrocera dorsalis. This experiment was conducted in Laboratory of Entomology, Department Plant Pest and Diseases Faculty of Agriculture, Sriwijaya University from March to September 2007. The result showed that the average level of parasitization of Psyttalia sp. reached 24.24%. The highest one was 30% and the lowest was 16.7%. The immature development period of Psyttalia sp. ranged from 24-31 days with average 27.5 days. Longevity of imago parasitoids which stored at 5 0C was 14.1 days. In the research, the progeny of parasitoids which produced was females with percentage of females reached 59.99% and percentage of males reached 39.99%.Keywords: fruit flies, Bactrocera dorsalis, parasitoid, Psyttalia sp.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fehintola V. Ajogbasile ◽  
Adeyemi T. Kayode ◽  
Paul E. Oluniyi ◽  
Kazeem O. Akano ◽  
Jessica N. Uwanibe ◽  
...  

Abstract Background Malaria remains a public health burden especially in Nigeria. To develop new malaria control and elimination strategies or refine existing ones, understanding parasite population diversity and transmission patterns is crucial. Methods In this study, characterization of the parasite diversity and structure of Plasmodium falciparum isolates from 633 dried blood spot samples in Nigeria was carried out using 12 microsatellite loci of P. falciparum. These microsatellite loci were amplified via semi-nested polymerase chain reaction (PCR) and fragments were analysed using population genetic tools. Results Estimates of parasite genetic diversity, such as mean number of different alleles (13.52), effective alleles (7.13), allelic richness (11.15) and expected heterozygosity (0.804), were high. Overall linkage disequilibrium was weak (0.006, P < 0.001). Parasite population structure was low (Fst: 0.008–0.105, AMOVA: 0.039). Conclusion The high level of parasite genetic diversity and low population structuring in this study suggests that parasite populations circulating in Nigeria are homogenous. However, higher resolution methods, such as the 24 SNP barcode and whole genome sequencing, may capture more specific parasite genetic signatures circulating in the country. The results obtained can be used as a baseline for parasite genetic diversity and structure, aiding in the formulation of appropriate therapeutic and control strategies in Nigeria.


Author(s):  
Peter A Follett ◽  
Fay E M Haynes ◽  
Bernard C Dominiak

Abstract Tephritid fruit flies are major economic pests for fruit production and are an impediment to international trade. Different host fruits are known to vary in their suitability for fruit flies to complete their life cycle. Currently, international regulatory standards that define the likely legal host status for tephritid fruit flies categorize fruits as a natural host, a conditional host, or a nonhost. For those fruits that are natural or conditional hosts, infestation rate can vary as a spectrum ranging from highly attractive fruits supporting large numbers of fruit flies to very poor hosts supporting low numbers. Here, we propose a Host Suitability Index (HSI), which divides the host status of natural and conditional hosts into five categories based on the log infestation rate (number of flies per kilogram of fruit) ranging from very poor (&lt;0.1), poor (0.1–1.0), moderately good (1.0–10.0), good (10–100), and very good (&gt;100). Infestation rates may be determined by field sampling or cage infestation studies. We illustrate the concept of this index using 21 papers that examine the host status of fruits in five species of polyphagous fruit flies in the Pacific region: Bactrocera tryoni Froggatt, Bactrocera dorsalis (Hendel), Bactrocera latifrons (Hendel), Zeugodacus cucurbitae (Coquillett), and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This general-purpose index may be useful in developing systems approaches that rely on poor host status, for determining surveillance and detection protocols for potential incursions, and to guide the appropriate regulatory response during fruit fly outbreaks.


2016 ◽  
Vol 37 (01) ◽  
pp. 19-29 ◽  
Author(s):  
Domingos Cugala ◽  
João Jone Jordane ◽  
Sunday Ekesi

AbstractPhytosanitary measures are a major barrier to trade in papaya. We assessed the infestation of tephritid fruit flies on different stages of maturity of papaya, to determine its non-host stage of maturity, for market access. Papaya fruits were collected from Kilifi and Embu counties, Kenya from March 2013 to December 2014, to assess the level of infestation by fruit flies according to the degree of fruit ripening. In all locations, no fruit fly infestation was recorded on papaya when fruits were at the 0, 25 and 50% yellow fruit ripening stage.Bactrocera dorsalis(Hendel) was, however, observed attacking fruits when papaya fruits were at 75 and 100% all yellow (fully ripe fruit ripening stage) with infestations of 0.19−0.51B. dorsalis/kg fruit and 0.24−1.24B. dorsalis/kg fruit, respectively, in all locations. Field cage exposure ofB. dorsalisto fruits of five papaya cultivars—‘Papino’, ‘Neo Essence’, ‘Sunrise Solo’, ‘Tainung No. 1’ and ‘Tainung No. 2’ in Manica Province, Mozambique—showed thatB. dorsalisdid not infest fruits at 0, 25 and 50% yellow ripening stages at the densities of 50 and 100 flies per cage. However, at 75% yellow ripening stage, up to 13.1 pupae/kg of fruits was recorded at a density of 150 flies per cage in Tainung No. 1, and infestation ranged from 4.5 to 136 pupae/kg fruits at 100% yellow ripening stage across all the cultivars and infestation densities. Laboratory evaluation of volatiles emanating from freshly crushed papaya pulp of four cultivars: ‘Sunrise Solo’, ‘Red Lady’, ‘Papayi’ and ‘Apoyo’ on egg viability ofB. dorsalisshowed that at 0, 25 and 50% yellow, egg hatchability was inhibited, suggesting that semiochemical compounds present in green tissues of papaya prevent egg development, although this effect was variable across the four cultivars and ripening stages. Export papaya is harvested at less than 40% yellow ripening stage. Our results, therefore, suggest that quarantine treatment for fruits at this ripening stage is inconsequential, asB. dorsalisdoes not infest papaya fruits at this stage; thus, authorities should permit entry of these papaya cultivars of less than 40% yellow ripening stage to quarantine-sensitive markets.


2009 ◽  
Vol 282 (1-2) ◽  
pp. 57-70 ◽  
Author(s):  
Majid Sharifi Tehrani ◽  
Mohsen Mardi ◽  
Jamal Sahebi ◽  
Pilar Catalán ◽  
Antonio Díaz-Pérez

2011 ◽  
Vol 39 (4-6) ◽  
pp. 594-599 ◽  
Author(s):  
Vanda Marilza de Carvalho ◽  
Carlos Alexandre Marochio ◽  
Claudete Aparecida Mangolin ◽  
Maria de Fátima Pires da Silva Machado

Sign in / Sign up

Export Citation Format

Share Document