AVALIAÇÃO DO POTENCIAL DE MUTAGENICIDADE E TOXICIDADE DA LECTINA HIPOGLICEMIANTE DE FOLHA DE BAUHINIA MONANDRA (PATA-DE-VACA)A

2012 ◽  
Vol 33 (2) ◽  
pp. 293
Author(s):  
Herbert Ary A. A. C. Nóbrega Sisenando

As plantas medicinais têm sido usadas desde a antiguidade no tratamento de diversas enfermidades humanas. As folhas de Bauhinia monandra são amplamente utilizadas no Brasil como fitoterápico no tratamento do Diabetes Mellitus. A partir das folhas de B. monandra, foi purificada uma lectina galactose-específica, denominada de BmoLL, que também apresentou uma importante capacidade hipoglicemiante. Seguindo as normas propostas pela Portaria nº 116, de 8 de agosto de 1996 do Ministério da Saúde do Brasil, o trabalho objetivou avaliar o potencial de mutagenicidade e toxicidade da BmoLL, mediante autilização dos testes com cepas de Escherichia coli da linhagem CC104 (Teste de mutagênese direta), com cepas de Salmonella typhimurium da linhagem TA (Teste de Kado), com plasmídeo pBCKS (Quebra de DNA plasmidial) e com enzima Exonuclease III (Detecção de sítios abásicos). Os resultados demonstraram que a lectina foi incapaz de aumentar a frequência de mutação reversa das cepas de S. typhimurium, com e sem ativador metabólico. No entanto, uma diminuição significativa na frequência de mutação espontânea foi observada nas cepas de E. coli, especialmente na deficiente de reparo (CC104mutMmutY), sugerindo um potencial antioxidante da lectina. A BmoLL é incapaz de gerar danos genotóxicos ecitotóxicos, com base nas concentrações testadas e nos ensaios realizados.

2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


Author(s):  
Bing Han ◽  
Xiaoyu Han ◽  
Mengmeng Ren ◽  
Yilin You ◽  
Jicheng Zhan ◽  
...  

Diseases caused by harmful microorganisms pose a serious threat to human health. Safe and environment-friendly disinfectants are, therefore, essential in preventing and controlling such pathogens. This study aimed to investigate the antimicrobial activity and mechanism of a novel hydrogen peroxide and silver (H 2 O 2 -Ag + ) complex (HSC) in combatting Staphylococcus aureus ATCC 29213, Escherichia coli O157:H7 NCTC 12900 and Salmonella typhimurium SL 1344. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against S. aureus were found to be 0.014 % H 2 O 2 -3.125 mg/L Ag + , while 0.028 % H 2 O 2 -6.25 mg/L Ag + for both E. coli and S. typhimurium . Results of the growth curve assay and time-kill trial suggest that the HSC could inhibit the growth of the tested bacteria, as 99.9 % of viable cells were killed following treatment at the 1 MIC for 3 h. Compared with Oxytech D10 disinfectant (0.25 % H 2 O 2 -5 mg/L Ag + ), the HSC exhibited better antibacterial efficacy at a lower concentration (0.045 % H 2 O 2 -10 mg/L Ag + ). The mechanism of antibacterial action of HSC was found including the disruption of the bacterial cell membrane, followed by entry into the bacteria cell to reduce intracellular adenosine triphosphate (ATP) concentration, and inhibit the activity of antioxidases, superoxide dismutase (SOD) and catalase (CAT). The enhanced bactericidal effect of hydrogen peroxide combined with silver indicates a potential for its application in environmental disinfection, particularly in the food industry.


1991 ◽  
Vol 54 (7) ◽  
pp. 496-501 ◽  
Author(s):  
ARTHUR HINTON ◽  
GEORGE E. SPATES ◽  
DONALD E. CORRIER ◽  
MICHAEL E. HUME ◽  
JOHN R. DELOACH ◽  
...  

A Veillonella species and Enterococcus durans were isolated from the cecal contents of adult broilers. Mixed cultures of Veillonella and E. durans inhibited the growth of Salmonella typhimurium and Escherichia coli 0157:H7 on media containing 2.5% lactose (w/v). The growth of S. typhimurium or E. coli 0157:H7 was not inhibited by mixed cultures containing Veillonella and E. durans on media containing only 0.25% lactose or by pure cultures of Veillonella or E. durans on media containing either 0.25% or 2.5% lactose. The mixed cultures of Veillonella and E. durans produced significantly (P<0.05) more acetic, propionic, and lactic acids in media containing 2.5% lactose than in media containing 0.25% lactose. The inhibition of the enteropathogens was related to the production of lactic acid from lactose by the E. durans and the production of acetic and propionic acids from lactic acid by the Veillonella.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 17-26
Author(s):  
I Matic ◽  
M Radman ◽  
C Rayssiguier

Abstract To get more insight into the control of homologous recombination between diverged DNA by the Mut proteins of the long-patch mismatch repair system, we have studied interspecies Escherichia coli/Salmonella typhimurium recombination. Knowing that the same recombination pathway (RecABCD) is responsible for intraspecies and interspecies recombination, we have now studied the structure (replacement vs. addition-type or other rearrangement-type recombinants) of 81 interspecies recombinants obtained in conjugational crosses between E. coli donor and mutL, mutS, mutH, mutU or mut+ S. typhimurium recipients. Taking advantage of high interspecies sequence divergence, a physical analysis was performed on one third of the E. coli Hfr genome, which was expected to be transferred to S. typhimurium F- recipients during 40 min before interruption of the mating. Probes specific for each species were hybridized on dot blots of genomic DNA, or on colonies, and the composition of the rrn operons was determined from purified genomic DNA. With very few exceptions, the structure of these interspecies recombinants corresponds to replacements of one continuous block of the recipient genome by the corresponding region of the donor genome.


1979 ◽  
Vol 42 (6) ◽  
pp. 464-469 ◽  
Author(s):  
M. E. STILES ◽  
L.-K. NG

Ham and chopped ham from two manufacturers were contaminated with five enteropathogens: Bacillus cereus, Clostridium perfringens, Escherichia coli, Salmonella typhimurium and Staphylococcus aureus, at time of slicing and vacuum-packaging, to simulate contamination by manufacturer. Subsequent treatment of the samples, representing sound and undesirable retail handling and consumer use conditions, indicated marked differences in the fate of the pathogens between these products and within product type between the two manufacturers. Greatest differences were observed between the chopped ham products. All pathogens, except C. perfringens, grew actively in fresh ham and chopped ham with abusive holding at 30 and 21 C. After storage at 4 or 10 C for 30 days, B. cereus and C. perfringens were no longer detected, even after subsequent holding at 30 or 21 C for 24 h. E. coli survival and growth was variable, S. typhimurium survived well and grew under some conditions and S. aureus was generally inhibited at high levels of competition.


Genetics ◽  
1985 ◽  
Vol 110 (3) ◽  
pp. 365-380
Author(s):  
Andreas F Lehner ◽  
C W Hill

ABSTRACT Previous workers have shown that intergeneric crosses between Salmonella typhimurium and Escherichia coli produce a high proportion of merodiploid recombinants among the viable progeny. We have examined the unequal crossover event that was responsible for a number of intergeneric merodiploids. The merodiploids that we studied were all heterozygous for the metB–argH interval and were the products of intergeneric conjugal crosses. We found that when the S. typhimurium donor had its transfer origin closely linked to metB and argH, all recombinants examined were merodiploid, and they generally arose as F-prime factors. Many of these F-prime factors had been created by recombination between flanking rrn genes in the donor. When the S. typhimurium Hfr transfer origin was more distant from the selected markers, quite different results were obtained. (1) Depending on the donor, 19–47% of the recombinants that acquired the donor argH  + or metB  + genes were merodiploid for these loci, but none of the recombinants were F-prime. (2) A majority of the merodiploids had a novel (nonparental) rrn gene, indicating that unequal recombination between nonidentical rrn genes was a prevalent mechanism for establishing the merodiploidy. (3) Both tandem and nontandem duplications were found. (4) Some of the merodiploids duplicated E. coli genes in addition to acquiring S. typhimurium genes. (5) Some merodiploids contained the oriC region from each parent. Of a total of 118 intergeneric merodiploids characterized from all donors, 48 different genotypes were observed, and 38 of the 48 had one or more nonparental rrn operons.


2004 ◽  
Vol 67 (5) ◽  
pp. 1014-1016 ◽  
Author(s):  
M. J. CHO ◽  
R. W. BUESCHER ◽  
M. JOHNSON ◽  
M. JANES

The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37° C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.


2006 ◽  
Vol 69 (8) ◽  
pp. 1802-1807 ◽  
Author(s):  
K. HARRIS ◽  
M. F. MILLER ◽  
G. H. LONERAGAN ◽  
M. M. BRASHEARS

A study was conducted to determine if acidified sodium chlorite (1,200 ppm) and acetic and lactic acids (2 and 4%) were effective in reducing foodborne pathogens in beef trim prior to grinding in a simulated processing environment. The reduction of Salmonella Typhimurium and Escherichia coli O157:H7 at high (4.0 log CFU/g) and low (1.0 log CFU/g) inoculation doses was evaluated at various processing steps, including the following: (i) in trim just after treatment application, (ii) in ground beef just after grinding, (iii) in ground beef 24 h after refrigerated storage, (iv) in ground beef 5 days after refrigerated storage, and (v) in ground beef 30 days after frozen storage. All antimicrobial treatments reduced the pathogens on the trim inoculated with the lower inoculation dose to nondetectable numbers in the trim and in the ground beef. There were significant reductions of both pathogens in the trim and in the ground beef inoculated with the high inoculation doses. On the trim itself, E. coli O157:H7 and Salmonella Typhimurium were reduced by 1.5 to 2.0 log cycles, with no differences among all treatments. In the ground beef, the organic acids were more effective in reducing both pathogens than the acidified sodium chlorite immediately after grinding, but after 1 day of storage, there were no differences among treatments. Overall, in the ground beef, there was a 2.5-log reduction of E. coli O157:H7 and a 1.5-log reduction of Salmonella Typhimurium that was sustained over time in refrigerated and frozen storage. Very few sensory differences between the control samples and the treated samples were detected by a consumer panel. Thus, antimicrobial treatments did not cause serious adverse sensory changes. Use of these antimicrobial treatments can be a promising intervention available to ground beef processors who currently have few interventions in their process.


2012 ◽  
Vol 75 (2) ◽  
pp. 255-260 ◽  
Author(s):  
TIFFANY M. MURAS ◽  
KERRI B. HARRIS ◽  
LISA M. LUCIA ◽  
MARGARET D. HARDIN ◽  
JEFFREY W. SAVELL

To determine the depth of pathogen dispersion and the ability of pathogens to survive in enhanced beef products and spent marinade, beef inside skirt steaks and tri-tip roasts were vacuum tumbled with two commercial marinades. The marinades were inoculated with Escherichia coli O157:H7 and Salmonella Typhimurium, resulting in an approximate count of 5.2 log CFU/ml. Both inside skirt steaks and tri-tip roasts were vacuum tumbled for 1 h and sampled immediately after tumbling (day 0), or were vacuum packaged, stored (ca. 4°C), and sampled on days 7 and 14. Samples of the spent marinade were taken after tumbling (day 0) and on days 3 and 7. For both marinades, Salmonella Typhimurium and E. coli O157:H7 were dispersed throughout the inside skirt steaks during vacuum tumbling. Although Salmonella Typhimurium and E. coli O157:H7 for the skirt steaks were still detectable after 14 days of storage, the log values were lower than those on days 0 and 7. For the tri-tip roasts, the pathogen distribution varied, depending on the thickness of the roasts, and pathogens were detectable on days 0, 7, and 14. The spent marinade sampled on days 0, 3, and 7 showed that the pathogens survived at refrigerated temperatures. Because pathogens can transfer to the interior of beef inside skirt steaks and tri-tip roasts when vacuum tumbled with contaminated marinade and survived during refrigerated storage, establishments should consider the potential food safety risks associated with reuse of marinade during the production of vacuum-tumbled beef products.


Sign in / Sign up

Export Citation Format

Share Document