scholarly journals Lactic Acid Bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) in Yogurt Inhibit the Growth of Escherichia coli, Salmonella typhimurium, and Shigella sp. In Vitro

2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>

2014 ◽  
Vol 60 (5) ◽  
pp. 287-295 ◽  
Author(s):  
Claude P. Champagne ◽  
Yves Raymond ◽  
Yves Pouliot ◽  
Sylvie F. Gauthier ◽  
Martin Lessard

The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man – Rogosa – Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μmax), lag time (LagT), and biomass (ODmax) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μmax of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μmax was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.


1991 ◽  
Vol 54 (7) ◽  
pp. 496-501 ◽  
Author(s):  
ARTHUR HINTON ◽  
GEORGE E. SPATES ◽  
DONALD E. CORRIER ◽  
MICHAEL E. HUME ◽  
JOHN R. DELOACH ◽  
...  

A Veillonella species and Enterococcus durans were isolated from the cecal contents of adult broilers. Mixed cultures of Veillonella and E. durans inhibited the growth of Salmonella typhimurium and Escherichia coli 0157:H7 on media containing 2.5% lactose (w/v). The growth of S. typhimurium or E. coli 0157:H7 was not inhibited by mixed cultures containing Veillonella and E. durans on media containing only 0.25% lactose or by pure cultures of Veillonella or E. durans on media containing either 0.25% or 2.5% lactose. The mixed cultures of Veillonella and E. durans produced significantly (P&lt;0.05) more acetic, propionic, and lactic acids in media containing 2.5% lactose than in media containing 0.25% lactose. The inhibition of the enteropathogens was related to the production of lactic acid from lactose by the E. durans and the production of acetic and propionic acids from lactic acid by the Veillonella.


2010 ◽  
Vol 73 (12) ◽  
pp. 2169-2179 ◽  
Author(s):  
ALEJANDRO ECHEVERRY ◽  
J. CHANCE BROOKS ◽  
MARKUS F. MILLER ◽  
JESSE A. COLLINS ◽  
GUY H. LONERAGAN ◽  
...  

After three different outbreaks were linked to the consumption of nonintact meat products contaminated with Escherichia coli O157:H7, the U.S. Food Safety and Inspection Service published notice requiring establishments producing mechanically tenderized and moisture-enhanced beef products to reassess their respective hazard analysis and critical control point systems, due to potential risk to the consumers. The objective of this study was to validate the use of lactic acid bacteria (LAB), acidified sodium chlorite (ASC), and lactic acid (LA) sprays when applied under a simulated purveyor setting as effective interventions to control and reduce E. coli O157:H7 and Salmonella Typhimurium DT 104 in inoculated U.S. Department of Agriculture (USDA) Choice strip loins (longissimus lumborum muscles) pieces intended for either mechanical blade tenderization or injection enhancement with a brine solution after an aging period of 14 or 21 days at 4.4°C under vacuum. After the mechanical process, translocation of E. coli O157:H7 and Salmonella Typhimurium DT 104 from the surface into the internal muscles occurred at levels between 1.00 and 5.72 log CFU/g, compared with controls. LAB and LA reduced internal E. coli O157:H7 loads up to 3.0 log, while ASC reduced the pathogen 1.4 to 2.3 log more than the control (P &lt; 0.05), respectively. Salmonella Typhimurium DT 104 was also reduced internally 1.3 to 2.8, 1.0 to 2.3, and 1.4 to 1.8 log after application of LAB, LA, and ASC, respectively. The application of antimicrobials by purveyors prior to mechanical tenderization or enhancement of steaks should increase the safety of these types of products.


2000 ◽  
Vol 63 (5) ◽  
pp. 601-607 ◽  
Author(s):  
CATHERINE N. CUTTER

The effects of plant extracts against pathogenic bacteria in vitro are well known, yet few studies have addressed the effects of these compounds against pathogens associated with muscle foods. A series of experiments was conducted to determine the effectiveness of a commercially available, generally recognized as safe, herb extract dispersed in sodium citrate (Protecta One) or sodium chloride (Protecta Two) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes associated with beef. In the first experiment, E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes inoculated onto beef and subjected to surface spray treatments with 2.5% solutions of Protecta One or Protecta Two were not affected by immediate application (day 0) of the herbal extracts. However, after 7 days of storage at 4°C, E. coli O157:H7 was reduced by &gt;1.3 log10 CFU/cm2 by Protecta Two; L. monocytogenes was reduced by 1.8 and 1.9 log10 CFU/cm2 by Protecta One and Protecta Two, respectively; Salmonella Typhimurium was not reduced &gt;0.3 log10 CFU/cm2 by either extract by day 7. In the second experiment, 2.5% Protecta Two (wt/vol or wt/wt) added to inoculated lean and adipose beef trim, processed, and packaged as ground beef chubs (80% lean, 20% adipose), did not reduce pathogen populations &gt;0.5 log10 CFU/g up to 14 days at 4°C. In the third experiment, surface spray treatments of beef with 2.5% lactic acid or 2.5% solutions of Protecta One or Protecta Two, vacuum packaged, and stored up to 35 days at 4°C did reduce E. coli O157:H7, L. monocytogenes, and Salmonella Typhimurium slightly. These studies suggest that the use of herb extracts may afford some reductions of pathogens on beef surfaces; however, the antimicrobial activity may be diminished in ground beef by adipose components.


Author(s):  
Dirayah Rauf Husain ◽  
Syahrul Gunawan ◽  
Sulfahri Sulfahri

Background and Objectives: Pathogenic bacterial infection is one of the factors that can cause extensive losses in poultry farming. Pathogenic bacteria that infect domestic chickens (Gallus domesticus) include Escherichia coli. This study has investigated antimicrobial compounds from probiotic bacteria isolated from the digestive tract of domestic chickens origi- nating from Takalar Regency, South Sulawesi, Indonesia. Materials and Methods: Lactic acid bacteria were grown on de Man–Ragosa–Sharpe agar medium for 24 hours. The bac- terial isolate with the best inhibitory power was identified as Bacillus subtilis (B. subtilis), based on 16S RNA sequences. Antimicrobial activity of the selected lactic acid bacteria was tested on the pathogenic bacteria, E. coli and Staphylococcus aureus. Using well diffusion method. In this study, in silico study was conducted to examine the structure and binding affin- ity of lactic acid bacteria against E. coli and S. aureus. Molecular docking experiments were performed using the PyRx 0.8 software. Results: This study showed that the bacteria were B. subtilis strain PATA-5. The response of inhibition of antimicrobial compounds produced by B. subtilis strain PATA-5 maximum in the stationary phase. The bactericidal properties of B. subtilis strain PATA-5 were categorized as strong against Gram-negative E. coli, i.e., 30.5 mm, when compared to Gram-positive S. aureus, i.e., 17.5 mm. Conclusion: B. subtilis strain PATA-5 is capable to produce natural antibiotic cyclic lipopeptides, namely surfactin.  


2009 ◽  
Vol 72 (8) ◽  
pp. 1616-1623 ◽  
Author(s):  
ALEJANDRO ECHEVERRY ◽  
J. CHANCE BROOKS ◽  
MARKUS F. MILLER ◽  
JESSE A. COLLINS ◽  
GUY H. LONERAGAN ◽  
...  

After three different outbreaks were linked to the consumption of nonintact meat products contaminated with Escherichia coli O157:H7, the U.S. Department of Agriculture, Food Safety and Inspection Service published notice requiring establishments producing mechanically tenderized and moisture-enhanced beef products to reassess their respective hazard analysis and critical control point system, due to potential risk to the consumers. The purpose of this study was to determine the effectiveness of different intervention strategies (lactic acid, lactic acid bacteria, and acidified sodium chlorite) to control E. coli O157:H7 and Salmonella enterica serotype Typhimurium definitive phage type 104 in mechanically tenderized and brine-enhanced beef strip loins when applied to the steaks prior to packaging and shipment for processing. After the mechanical process, translocation of E. coli O157:H7 and Salmonella Typhimurium DT 104 from the surface into the internal muscles occurred at levels between 2.0 and 4.0 log CFU/g (from an initial inoculation level of 5.0 log) after mechanical tenderization, and at levels of 1.0 to 3.0 log CFU/g after injection, with all the interventions consistently presenting lower microbial counts (P &lt; 0.05) than did the controls. Lactic acid bacteria reduced internal E. coli O157:H7 loads 1.2 to &gt;2.2 log cycles, while the acidified sodium chlorite and lactic acid reduced them between 0.8 and 3.0 log, respectively. Salmonella Typhimurium DT 104 was also reduced internally after application of all interventions between 0.9 and 2.2 log. The application of antimicrobials to the steaks prior to packaging and shipment on day 0 was effective in reducing internalization of both pathogens in nonintact beef products stored for both 14 and 21 days.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingxue Chen ◽  
Song Wang ◽  
Jiayao Guo ◽  
Qinggang Xie ◽  
Smith Etareri Evivie ◽  
...  

Cow mastitis, which significantly lowers milk quality, is mainly caused by pathogenic bacteria such as E. coli. Previous studies have suggested that lactic acid bacteria can have antagonistic effects on pathogenic bacteria that cause mastitis. In the current study, we evaluated the in vitro and in vivo alleviative effects of L. plantarum KLDS 1.0344 in mastitis treatment. In vitro antibacterial experiments were performed using bovine mammary epithelial cell (bMEC), followed by in vivo studies involving mastitis mouse models. In vitro results indicate that lactic acid was the primary substance inhibiting the E. coli pathogen. Meanwhile, treatment with L. plantarum KLDS 1.0344 can reduce cytokines’ mRNA expression levels in the inflammatory response of bMEC induced by LPS. In vivo, the use of this strain reduced the secretion of inflammatory factors IL-6, IL-1β, and TNF-α, and decreased the activity of myeloperoxidase (MPO), and inhibited the secretion of p-p65 and p-IκBα. These results indicate that L. plantarum KLDS 1.0344 pretreatment can reduce the expression of inflammatory factors by inhibiting the activation of NF-κB signaling pathway, thus exerting prevent the occurrence of inflammation in vivo. Our findings show that L. plantarum KLDS 1.0344 has excellent properties as an alternative to antibiotics and can be developed into lactic acid bacteria preparation to prevent mastitis disease.


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2020 ◽  
Vol 12 (4) ◽  
pp. 357-365
Author(s):  
H.I. Atta ◽  
A. Gimba ◽  
T. Bamgbose

Abstract. The production of bacteriocins by lactic acid bacteria affords them the ability to inhibit the growth of bacteria; they are particularly important in the biocontrol of human and plant pathogens. Lactic acid bacteria have been frequently isolated from fermented foods due to the high acidity these foods contain. In this study, lactic acid bacteria were isolated from garri, a popular Nigerian staple food, which is fermented from cassava, and their antagonistic activity against clinical and environmental isolates of Escherichia coli was determined. The species of Lactobacillus isolated include: Lactobacillus plantarum (50%), Lactobacillus fermentum (20%), Lactobacillus acidophilus (20%), and Lactobacillus salivarius (10%). Growth inhibition of the strains of E.coli was observed in Lactobacillus plantarum that inhibited the growth of both. The clinical and environmental isolates of E. coli were inhibited by Lactobacillus plantarum, while Lactobacillus acidophilus showed activity against only the clinical isolate. The greatest zone of inhibition against the strains of E. coli was recorded by Lactobacillus acidophilus (22.7±1.53 mm). The bacteriocins produced by Lactobacillus species have a good potential in the biocontrol of pathogens, and should be the focus of further studies on antibiotic resistant bacteria.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guesh Mulaw ◽  
Tesfaye Sisay Tessema ◽  
Diriba Muleta ◽  
Anteneh Tesfaye

Probiotics are live microorganisms which when consumed in large number together with a food promote the health of the consumer. The aim of this study was to evaluate in vitro probiotic properties of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented Teff injera dough, Ergo, and Kocho products. A total of 90 LAB were isolated, of which 4 (4.44%) isolates showed 45.35–97.11% and 38.40–90.49% survival rates at pH values (2, 2.5, and 3) for 3 and 6 h, in that order. The four acid-tolerant isolates were found tolerant to 0.3% bile salt for 24 h with 91.37 to 97.22% rate of survival. The acid-and-bile salt-tolerant LAB isolates were found inhibiting some food-borne test pathogenic bacteria to varying degrees. All acid-and-bile-tolerant isolates displayed varying sensitivity to different antibiotics. The in vitro adherence to stainless steel plates of the 4 screened probiotic LAB isolates were ranged from 32.75 to 36.30% adhesion rate. The four efficient probiotic LAB isolates that belonged to Lactobacillus species were identified to the strain level using 16S rDNA gene sequence comparisons and, namely, were Lactobacillus plantarum strain CIP 103151, Lactobacillus paracasei subsp. tolerans strain NBRC 15906, Lactobacillus paracasei strain NBRC 15889, and Lactobacillus plantarum strain JCM 1149. The four Lactobacillus strains were found to be potentially useful to produce probiotic products.


Sign in / Sign up

Export Citation Format

Share Document