scholarly journals Gravitational waves as tracers of nuclear equation of state.

2008 ◽  
Author(s):  
Ruben Cabezon ◽  
Domingo Garcìa-Senz
2010 ◽  
Vol 19 (08n09) ◽  
pp. 1712-1719
Author(s):  
DE-HUA WEN ◽  
BAO-AN LI ◽  
PLAMEN G. KRASTEV

The frequencies and damping times of the axial w-mode oscillations of neutron stars are investigated using a nuclear equation of state (EOS) partially constrained by the available terrestrial laboratory data. It is found that the nuclear symmetry energy E sym (ρ), especially its high density behavior, plays an important role in determining both the eigen-frequencies and the damping times of these oscillations.


2021 ◽  
Vol 923 (2) ◽  
pp. 201
Author(s):  
Oliver Eggenberger Andersen ◽  
Shuai Zha ◽  
André da Silva Schneider ◽  
Aurore Betranhandy ◽  
Sean M. Couch ◽  
...  

Abstract Gravitational waves (GWs) provide unobscured insight into the birthplace of neutron stars and black holes in core-collapse supernovae (CCSNe). The nuclear equation of state (EOS) describing these dense environments is yet uncertain, and variations in its prescription affect the proto−neutron star (PNS) and the post-bounce dynamics in CCSN simulations, subsequently impacting the GW emission. We perform axisymmetric simulations of CCSNe with Skyrme-type EOSs to study how the GW signal and PNS convection zone are impacted by two experimentally accessible EOS parameters, (1) the effective mass of nucleons, m ⋆, which is crucial in setting the thermal dependence of the EOS, and (2) the isoscalar incompressibility modulus, K sat. While K sat shows little impact, the peak frequency of the GWs has a strong effective mass dependence due to faster contraction of the PNS for higher values of m ⋆ owing to a decreased thermal pressure. These more compact PNSs also exhibit more neutrino heating, which drives earlier explosions and correlates with the GW amplitude via accretion plumes striking the PNS, exciting the oscillations. We investigate the spatial origin of the GWs and show the agreement between a frequency-radial distribution of the GW emission and a perturbation analysis. We do not rule out overshoot from below via PNS convection as another moderately strong excitation mechanism in our simulations. We also study the combined effect of effective mass and rotation. In all our simulations we find evidence for a power gap near ∼1250 Hz; we investigate its origin and report its EOS dependence.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1406
Author(s):  
Rémi Bougault ◽  
Bernard Borderie ◽  
Abdelouahad Chbihi ◽  
Quentin Fable ◽  
John David Frankland ◽  
...  

Correlations and clustering are of great importance in the study of the Nuclear Equation of State. Information on these items/aspects can be obtained using heavy-ion reactions which are described by dynamical theories. We propose a dataset that will be useful for improving the description of light cluster production in transport model approaches. The dataset combines published and new data and is presented in a form that allows direct comparison of the experiment with theoretical predictions. The dataset is ranging in bombarding energy from 32 to 1930 A MeV. In constructing this dataset, we put in evidence the existence of a change in the light cluster production mechanism that corresponds to a peak in deuteron production.


1995 ◽  
Vol 583 ◽  
pp. 599-606 ◽  
Author(s):  
M. Baldo ◽  
G. Giansiracusa ◽  
U. Lombardo ◽  
I. Bombaci ◽  
L.S. Ferreira

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


1986 ◽  
Vol 447 ◽  
pp. 13-26 ◽  
Author(s):  
Joseph J. Molitoris ◽  
Detlev Hahn ◽  
Horst Stocker

Sign in / Sign up

Export Citation Format

Share Document