scholarly journals Minimal length in quantum space and integration of the line element in noncommutative geometry

2012 ◽  
Author(s):  
Pierre Martinetti ◽  
Luca Tomassini
2012 ◽  
Vol 24 (05) ◽  
pp. 1250010 ◽  
Author(s):  
PIERRE MARTINETTI ◽  
FLAVIO MERCATI ◽  
LUCA TOMASSINI

We question the emergence of a minimal length in quantum spacetime, comparing two notions that appeared at various points in the literature: on the one side, the quantum length as the spectrum of an operator L in the Doplicher Fredenhagen Roberts (DFR) quantum spacetime, as well as in the canonical noncommutative spacetime (θ-Minkowski); on the other side, Connes' spectral distance in noncommutative geometry. Although in the Euclidean space the two notions merge into the one of geodesic distance, they yield distinct results in the noncommutative framework. In particular, in the Moyal plane, the quantum length is bounded above from zero while the spectral distance can take any real positive value, including infinity. We show how to solve this discrepancy by doubling the spectral triple. This leads us to introduce a modified quantum length d′L, which coincides exactly with the spectral distance dD on the set of states of optimal localization. On the set of eigenstates of the quantum harmonic oscillator — together with their translations — d′L and dD coincide asymptotically, both in the high energy and large translation limits. At small energy, we interpret the discrepancy between d′L and dD as two distinct ways of integrating the line element on a quantum space. This leads us to propose an equation for a geodesic on the Moyal plane.


Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab ◽  
Sameh Shenawy ◽  
Eiman Abou El Dahab

2009 ◽  
Vol 24 (15) ◽  
pp. 2792-2801 ◽  
Author(s):  
PIERRE MARTINETTI

We question the notion of line element in some quantum spaces that are expected to play a role in quantum gravity, namely noncommutative deformations of Minkowski spaces. We recall how the implementation of the Leibniz rule forbids to see some of the infinitesimal deformed Poincaré transformations as good candidates for Noether symmetries. Then we recall the more fundamental view on the line element proposed in noncommutative geometry, and re-interprete at this light some previous results on Connes' distance formula.


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Сonanical quantum space-time and the arrow time


2019 ◽  
Author(s):  
Vitaly Kuyukov

Quantum tunneling of noncommutative geometry gives the definition of time in the form of holography, that is, in the form of a closed surface integral. Ultimately, the holography of time shows the dualism between quantum mechanics and the general theory of relativity.


2019 ◽  
Author(s):  
Matheus Pereira Lobo
Keyword(s):  

We follow some logical principles to conclude there is a minimal length.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


Synthese ◽  
2021 ◽  
Author(s):  
Nick Huggett ◽  
Fedele Lizzi ◽  
Tushar Menon

AbstractNoncommutative geometries generalize standard smooth geometries, parametrizing the noncommutativity of dimensions with a fundamental quantity with the dimensions of area. The question arises then of whether the concept of a region smaller than the scale—and ultimately the concept of a point—makes sense in such a theory. We argue that it does not, in two interrelated ways. In the context of Connes’ spectral triple approach, we show that arbitrarily small regions are not definable in the formal sense. While in the scalar field Moyal–Weyl approach, we show that they cannot be given an operational definition. We conclude that points do not exist in such geometries. We therefore investigate (a) the metaphysics of such a geometry, and (b) how the appearance of smooth manifold might be recovered as an approximation to a fundamental noncommutative geometry.


Sign in / Sign up

Export Citation Format

Share Document