scholarly journals Monte Carlo model for pp, pA and AA collisions at high energy: parameters tuning and results

2014 ◽  
Author(s):  
Vladimir Kovalenko
2019 ◽  
Vol 623 ◽  
pp. A18 ◽  
Author(s):  
H. Gu ◽  
J. Cui ◽  
D.-D. Niu ◽  
A. Wellbrock ◽  
W.-L. Tseng ◽  
...  

Context. Sputtering serves as an important mechanism of atmospheric escape in the solar system. Aims. This study is devoted to atmospheric sputtering on Titan, with a special focus on how the N2 and CH4 sputtering yields respond to varying ion incidence energy and angle, and varying ion mass. Methods. A Monte Carlo model was constructed to track the energy degradation of incident ions and atmospheric recoils from which the sputtering yields were obtained. A large number of model runs were performed, taking into account three categories of incident ion with representative masses of 1, 16, and 28 Da, as well as two collision models both characterized by a strongly forward scattering angle distribution, but different in terms of the inclusion or exclusion of electronic excitation of ambient neutrals. Results. Our model calculations reveal substantial increases in both the N2 and CH4 sputtering yields with increasing ion incidence energy and angle, and increasing ion mass. The energy distribution of escaping molecules is described reasonably well by a power law, with an enhanced high energy tail for more energetic incident ions and less massive atmospheric recoils. The CH4-to-N2 sputtering yield ratio is found to range from 10 to 20%, increasing with increasing incidence angle and also increasing with decreasing incidence energy. An approximate treatment of ion impact chemistry is also included in our model, predicting N2 sputtering yields on Titan that are in broad agreement with previous results.


1973 ◽  
Vol 51 (8) ◽  
pp. 804-813
Author(s):  
Robert E. Streitmatter

A new method for estimating the center of mass of high energy cosmic ray interactions is introduced and tested with a simple Monte Carlo model and a small number of cloud chamber jets.


2007 ◽  
Vol 34 (9) ◽  
pp. 3489-3499 ◽  
Author(s):  
Stephen F. Kry ◽  
Uwe Titt ◽  
David Followill ◽  
Falk Pönisch ◽  
Oleg N. Vassiliev ◽  
...  

2005 ◽  
Vol 23 (4) ◽  
pp. 1473-1480 ◽  
Author(s):  
J.-C. Gérard ◽  
V. I. Shematovich ◽  
D. V. Bisikalo ◽  
D. Lummerzheim

Abstract. Hydrogen line profiles measured from space-borne or ground-based instruments provide useful information to study the physical processes occurring in the proton aurora and to estimate the proton flux characteristics. The line shape of the hydrogen lines is determined by the velocity distribution of H atoms along the line-of-sight of the instrument. Calculations of line profiles of auroral hydrogen emissions were obtained using a Monte Carlo kinetic model of proton precipitation into the auroral atmosphere. In this model both processes of energy degradation and scattering angle redistribution in momentum and charge transfer collisions of the high-energy proton/hydrogen flux with the ambient atmospheric gas are considered at the microphysical level. The model is based on measured cross sections and scattering angle distributions and on a stochastic interpretation of such collisions. Calculations show that collisional angular redistribution of the precipitating proton/hydrogen beam is the dominant process leading to the formation of extended wings and peak shifts in the hydrogen line profiles. All simulations produce a peak shift from the rest line wavelength decreasing with increasing proton energy. These model predictions are confirmed by analysis of ground-based H-β line observations from Poker Flat, showing an anti-correlation between the magnitude of the peak shift and the extent of the blue wing of the line. Our results also strongly suggest that the relative extension of the blue and red wings provides a much better indicator of the auroral proton characteristic energy than the position of the peak wavelength.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 32
Author(s):  
Andrei Bykov ◽  
Vadim Romansky ◽  
Sergei Osipov

Recent discovery of fast blue optical transients (FBOTs)—a new class of energetic transient sources—can shed light on the long-standing problem of supernova—long gamma-ray burst connections. A distinctive feature of such objects is the presence of modestly relativistic outflows which place them in between the non-relativistic and relativistic supernovae-related events. Here we present the results of kinetic particle-in-cell and Monte Carlo simulations of particle acceleration and magnetic field amplification by shocks with the velocities in the interval between 0.1 and 0.7 c. These simulations are needed for the interpretation of the observed broad band radiation of FBOTs. Their fast, mildly to moderately relativistic outflows may efficiently accelerate relativistic particles. With particle-in-cell simulations we demonstrate that synchrotron radiation of accelerated relativistic electrons in the shock downstream may fit the observed radio fluxes. At longer timescales, well beyond those reachable within a particle-in-cell approach, our nonlinear Monte Carlo model predicts that protons and nuclei can be accelerated to petaelectronvolt (PeV) energies. Therefore, such fast and energetic transient sources can contribute to galactic populations of high energy cosmic rays.


Author(s):  
John C. Russ

Monte-Carlo programs are well recognized for their ability to model electron beam interactions with samples, and to incorporate boundary conditions such as compositional or surface variations which are difficult to handle analytically. This success has been especially powerful for modelling X-ray emission and the backscattering of high energy electrons. Secondary electron emission has proven to be somewhat more difficult, since the diffusion of the generated secondaries to the surface is strongly geometry dependent, and requires analytical calculations as well as material parameters. Modelling of secondary electron yield within a Monte-Carlo framework has been done using multiple scattering programs, but is not readily adapted to the moderately complex geometries associated with samples such as microelectronic devices, etc.This paper reports results using a different approach in which simplifying assumptions are made to permit direct and easy estimation of the secondary electron signal from samples of arbitrary complexity. The single-scattering program which performs the basic Monte-Carlo simulation (and is also used for backscattered electron and EBIC simulation) allows multiple regions to be defined within the sample, each with boundaries formed by a polygon of any number of sides. Each region may be given any elemental composition in atomic percent. In addition to the regions comprising the primary structure of the sample, a series of thin regions are defined along the surface(s) in which the total energy loss of the primary electrons is summed. This energy loss is assumed to be proportional to the generated secondary electron signal which would be emitted from the sample. The only adjustable variable is the thickness of the region, which plays the same role as the mean free path of the secondary electrons in an analytical calculation. This is treated as an empirical factor, similar in many respects to the λ and ε parameters in the Joy model.


Sign in / Sign up

Export Citation Format

Share Document