scholarly journals Pion condensation phase at finite isospin chemical potential in Holographic QCD model

2014 ◽  
Author(s):  
Hiroki Nishihara
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xun Chen ◽  
Lin Zhang ◽  
Danning Li ◽  
Defu Hou ◽  
Mei Huang

Abstract We investigate rotating effect on deconfinement phase transition in an Einstein-Maxwell-Dilaton (EMD) model in bottom-up holographic QCD approach. By constructing a rotating black hole, which is supposed to be dual to rotating strongly coupled nuclear matter, we investigate the thermodynamic quantities, including entropy density, pressure, energy density, trace anomaly, sound speed and specific heat for both pure gluon system and two-flavor system under rotation. It is shown that those thermodynamic quantities would be enhanced by large angular velocity. Also, we extract the information of phase transition from those thermodynamic quantities, as well as the order parameter of deconfinement phase transition, i.e. the loop operators. It is shown that, in the T − ω plane, for two-flavor case with small chemical potential, the phase transition is always crossover. The transition temperature decreases slowly with angular velocity and chemical potential. For pure gluon system with zero chemical potential, the phase transition is always first order, while at finite chemical potential a critical end point (CEP) will present in the T − ω plane.


2018 ◽  
Vol 175 ◽  
pp. 07042 ◽  
Author(s):  
Philipp Scior ◽  
Lorenz von Smekal ◽  
Dominik Smith

We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.


Author(s):  
Prabal Adhikari ◽  
Jens O. Andersen ◽  
Patrick Kneschke

Abstract In this paper, we calculate the equation of state of two-flavor finite isospin chiral perturbation theory at next-to-leading order in the pion-condensed phase at zero temperature. We show that the transition from the vacuum phase to a Bose-condensed phase is of second order. While the tree-level result has been known for some time, surprisingly quantum effects have not yet been incorporated into the equation of state.  We find that the corrections to the quantities we compute, namely the isospin density, pressure, and equation of state, increase with increasing isospin chemical potential. We compare our results to recent lattice simulations of 2 + 1 flavor QCD with physical quark masses. The agreement with the lattice results is generally good and improves somewhat as we go from leading order to next-to-leading order in $$\chi $$χPT.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Umut Gürsoy

AbstractWe review the holographic approach to electromagnetic phenomena in large N QCD. After a brief discussion of earlier holographic models, we concentrate on the improved holographic QCD model extended to involve magnetically induced phenomena. We explore the influence of magnetic fields on the QCD ground state, focusing on (inverse) magnetic catalysis of chiral condensate, investigate the phase diagram of the theory as a function of magnetic field, temperature and quark chemical potential, and, finally discuss effects of magnetic fields on the quark–anti-quark potential, shear viscosity, speed of sound and magnetization.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Kazem Bitaghsir Fadafan ◽  
Jesús Cruz Rojas

AbstractWe study a bottom-up holographic description of the QCD colour superconducting phase in the presence of higher derivative corrections. We expand this holographic model in the context of Gauss–Bonnet (GB) gravity. The Cooper pair condensate has been investigated in the deconfinement phase for different values of the GB coupling parameter $$\lambda _{G B}$$ λ GB , we observe a change in the value of the critical chemical potential $$\mu _c$$ μ c in comparison to Einstein gravity. We find that $$\mu _c$$ μ c grows as $$\lambda _{G B}$$ λ GB increases. We add four fermion interactions and show that in the presence of these corrections the main interesting features of the model are still present and that the intrinsic attractive interaction can not be switched off. This study suggests to find GB corrections to equation of state of holographic QCD matter.


Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 80-86
Author(s):  
Bastian B. Brandt ◽  
Francesca Cuteri ◽  
Gergely Endrődi ◽  
Sebastian Schmalzbauer

For large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of u and d ¯ Cooper pairs. This phase, which is denoted as the Bardeen-Cooper-Schrieffer (BCS) phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at μ I ≥ m π / 2 by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both deconfinement and charged pion condensation, comes from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential).


2016 ◽  
Vol 31 (08) ◽  
pp. 1650030
Author(s):  
Neha Bhatnagar ◽  
Sanjay Siwach

We study the Renormalization Group (RG) flow of AC conductivity in soft wall model of holographic QCD. We consider the charged black hole metric and the explicit form of AC conductivity is obtained at the cutoff surface. We plot the numerical solution of conductivity flow as a function of radial coordinate. The equation of gauge field is also considered and the numerical solution is obtained for AC conductivity as a function of frequency. The results for AC conductivity are also obtained for different values of chemical potential and Gauss–Bonnet couplings.


2010 ◽  
Vol 82 (9) ◽  
Author(s):  
Dylan Albrecht ◽  
Joshua Erlich

Sign in / Sign up

Export Citation Format

Share Document