scholarly journals Barometric effect of the neutron component of cosmic rays with consideration for wind effect at the Antarctic station Mirny a

2016 ◽  
Author(s):  
Lev Pustilnik ◽  
Pavel Kabelev ◽  
Anatoly Belov ◽  
Eugenya Eroshenko ◽  
Raya Guschina ◽  
...  
2016 ◽  
Vol 2 (1) ◽  
pp. 97-102
Author(s):  
Павел Кобелев ◽  
Pavel Kobelev ◽  
Артем Абунин ◽  
Artem Abunin ◽  
Мария Абунина ◽  
...  

The barometric effect of cosmic ray neutron component was estimated on the example of the Antarctic station Mirny. We used hourly data from continuous monitoring of neutron component and data from a local weather station for 2007–2014. Wind speed at the station Mirny reaches 20–40 m/s in winter that corresponds to the dynamic pressure 5–6 mbar and leads to a 5 % error in variations of neutron component because of dynamic effects in the atmosphere. The results can be applied to detectors located in high-latitude and high-mountain regions where the wind speed can be significant.


2016 ◽  
Vol 2 (1) ◽  
pp. 71-75
Author(s):  
Павел Кобелев ◽  
Pavel Kobelev ◽  
Артем Абунин ◽  
Artem Abunin ◽  
Мария Абунина ◽  
...  

Estimation of barometric coefficient for neutron component of cosmic rays was performed for Antarctic station Mirny taking into account effect of dynamic pressure caused by wind in the atmosphere. Hourly data of continue monitoring of neutron component and data of the local meteo station have been used for the period 2007-2014. Wind velocity at the observatory Mirny reaches 20-40 m/s in winter that corresponds to dynamic pressure of 5-6 mb and leads to the error of 5% in variations of neutron component because of dynamic effect in the atmosphere. The results are interesting for high latitude and high mountain detectors, where affect Bernulli may be significant.


1968 ◽  
Vol 46 (10) ◽  
pp. S823-S824
Author(s):  
S. N. Vernov ◽  
A. N. Charakhchyan ◽  
T. N. Charakhchyan ◽  
Yu. J. Stozhkov

The results of the analysis of data obtained from measurements carried out by means of regular stratospheric launchings of cosmic-ray radiosondes over the Murmansk region and the Antarctic observatory in Mirny in 1963–66 are presented. The problem of the anisotropy of the primary component of low-energy cosmic rays and of temperature effects on the cosmic-ray intensity in the atmosphere are discussed.


2018 ◽  
Vol 4 (3) ◽  
pp. 76-82 ◽  
Author(s):  
Валерий Янчуковский ◽  
Valery Yanchukovsky ◽  
Василий Кузьменко ◽  
Vasiliy Kuzmenko

Variations in the intensity of cosmic rays observed in the depth of the atmosphere include the atmospheric component of the variations. Cosmic-ray muon telescopes, along with the barometric effect, have a significant temperature effect due to the instability of detected particles. To take into account atmospheric effects in muon telescope data, meteorological coefficients of muon intensity are found. The meteorological coefficients of the intensity of muons recorded in the depth of the atmosphere are estimated from experimental data, using various methods of factor analysis. The results obtained from experimental data are compared with the results of theoretical calculations.


RADIOISOTOPES ◽  
1995 ◽  
Vol 44 (1) ◽  
pp. 33-34 ◽  
Author(s):  
Masaki MATSUMOTO ◽  
Masahide FURUKAWA ◽  
Shinji TOKONAMI ◽  
Kazunobu FUJITAKA ◽  
Takashi NAKAMURA

2019 ◽  
Vol 216 ◽  
pp. 01009
Author(s):  
Abigail Vieregg

We summarize results from the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA long-duration balloon payload that searches for radio emission from the interactions of ultra-high-energy neutrinos and cosmic rays. ANITAIII was launched in December 2014 and flew for 22 days. We report the results from multipleanalyses of the data, which search for Askaryan radio emission from neutrinos interacting in the Antarctic ice as well as geomagnetic radio emission from extensive air showers (EASs) induced by cosmic rays or a tau lepton created in an in-earth tau neutrino interaction. In the most sensitive Askaryan neutrino search, we find one eventon a pre-unblinding background of 0:7−0:3+0.5. Across all searches, including a dedicated EAS search, we find a total of 28 EAS-like events. One of these events is consistent with an upward-traveling EAS, with a post-unblinding background estimate of ⪷10−2.


2019 ◽  
Vol 216 ◽  
pp. 02008 ◽  
Author(s):  
Christian Glaser

The ARIANNA detector aims to detect neutrinos with energies above 1016 eV by instrumenting 0.5 Teratons of ice with a surface array of a thousand independent radio detector stations in Antarctica. The Antarctic ice is transparent to the radio signals caused by the Askaryan effect which allows for a cost-effective instrumentation of large volumes. Several pilot stations are currently operating successfully at the Moore’s Bay site (Ross Ice Shelf) and at the South Pole. As the ARIANNA detector stations are positioned at the surface, the more abundant cosmic-ray air showers are also measured and serve as a direct way to prove the capabilities of the detector. We will present measured cosmic rays and will show how the incoming direction, polarization and electric field of the cosmicray pulse can be reconstructed from single detector stations comprising 4 upward and 4 downward facing LPDA antennas.


Sign in / Sign up

Export Citation Format

Share Document