scholarly journals The impact of the circumstellar magnetic field of progenitor stars on the resulting gamma-ray spectrum from supernova remnants

2019 ◽  
Author(s):  
Iurii Sushch ◽  
Robert Brose ◽  
Martin Pohl
2020 ◽  
Vol 496 (2) ◽  
pp. 2448-2461 ◽  
Author(s):  
Matteo Pais ◽  
Christoph Pfrommer ◽  
Kristian Ehlert ◽  
Maria Werhahn ◽  
Georg Winner

ABSTRACT Galactic cosmic rays (CRs) are believed to be accelerated at supernova remnant (SNR) shocks. In the hadronic scenario, the TeV gamma-ray emission from SNRs originates from decaying pions that are produced in collisions of the interstellar gas and CRs. Using CR-magnetohydrodynamic simulations, we show that magnetic obliquity-dependent shock acceleration is able to reproduce the observed TeV gamma-ray morphology of SNRs such as Vela Jr and SN1006 solely by varying the magnetic morphology. This implies that gamma-ray bright regions result from quasi-parallel shocks (i.e. when the shock propagates at a narrow angle to the upstream magnetic field), which are known to efficiently accelerate CR protons, and that gamma-ray dark regions point to quasi-perpendicular shock configurations. Comparison of the simulated gamma-ray morphology to observations allows us to constrain the magnetic coherence scale λB around Vela Jr and SN1006 to $\lambda _B \simeq 13_{-4.3}^{+13}$ pc and $\lambda _B \gt 200_{-40}^{+50}$ pc, respectively, where the ambient magnetic field of SN1006 is consistent with being largely homogeneous. We find consistent pure hadronic and mixed hadronic-leptonic models that both reproduce the multifrequency spectra from the radio to TeV gamma-rays and match the observed gamma-ray morphology. Finally, to capture the propagation of an SNR shock in a clumpy interstellar medium, we study the interaction of a shock with a dense cloud with numerical simulations and analytics. We construct an analytical gamma-ray model for a core collapse SNR propagating through a structured interstellar medium, and show that the gamma-ray luminosity is only biased by 30 per cent for realistic parameters.


2020 ◽  
Vol 497 (3) ◽  
pp. 3581-3590
Author(s):  
Emma de Oña Wilhelmi ◽  
Iurii Sushch ◽  
Robert Brose ◽  
Enrique Mestre ◽  
Yang Su ◽  
...  

ABSTRACT Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2–0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows a detailed modelling of its radiation from radio to high energies. We reanalysed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favours a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ∼100 µG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ∼10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.


2002 ◽  
Vol 206 ◽  
pp. 217-220 ◽  
Author(s):  
Crystal L. Brogan ◽  
Mark J. Claussen ◽  
William M. Goss

Supernovae have a profound effect on the morphology, kinematics, and metallicity of galaxies. The impact of supernova shocks on surrounding molecular clouds is also thought to trigger new generations of star formation. A critical ingredient in such interactions and, indeed, all aspects of supernova remnant (SNR) evolution are magnetic fields. In recent years, OH (1720 MHz) masers have been used as signposts for the interaction of SNRs with molecular gas. In addition to tracing SNR/molecular cloud interactions, the OH (1720 MHz) maser line also provides a unique opportunity to measure the strength of the post-shock magnetic field via Zeeman splitting. Recent results from efforts to both detect the magnetic fields and resolve the maser spot sizes of OH (1720 MHz) masers toward W51C using the VLBA and W44 using MERLIN are presented. These observations have yielded magnetic field detections between 0.5 and 2.5 mG and large maser spot sizes of about 1015 cm.


2021 ◽  
Vol 508 (1) ◽  
pp. 842-851
Author(s):  
Surajit Kalita ◽  
Tushar Mondal ◽  
Christopher A Tout ◽  
Tomasz Bulik ◽  
Banibrata Mukhopadhyay

ABSTRACT More than two dozen soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) have been detected so far. These are isolated compact objects. Many of them are either found to be associated with supernova remnants or their surface magnetic fields are directly measured, confirming that they are neutron stars (NSs). However, it has been argued that some SGRs and AXPs are highly magnetized white dwarfs (WDs). Meanwhile, the existence of super-Chandrasekhar WDs has remained to be a puzzle. However, not even a single such massive WD has been observed directly. Moreover, some WD pulsars are detected in electromagnetic surveys and some of their masses are still not confirmed. Here, we calculate the signal-to-noise ratio for all these objects, considering different magnetic field configurations and thereby estimate the required time for their detection by various gravitational wave (GW) detectors. For SGRs and AXPs, we show that, if these are NSs, they can hardly be detected by any of the GW detectors, while if they are WDs, big bang Observer (BBO), DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) and Advanced Laser Interferometer Antenna (ALIA) would be able to detect them within a few days to a year of integration, depending on the magnetic field strength and its configuration. Similarly, if a super-Chandrasekhar WD has a dominant toroidal field, we show that even Laser Interferometer Space Antenna (LISA) and TianQin would be able to detect it within one year of integration. We also discuss how GWs can confirm the masses of the WD pulsars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 480-482 ◽  
Author(s):  
S. Safi-Harb ◽  
H. S. Kumar

AbstractThe distinction between the high-magnetic field pulsars (HBPs, thought to be mainly rotation-powered) and magnetars (commonly believed to be powered by their super-strong magnetic fields) has been recently blurred with the discovery of magnetar-like activity from the HBP J1846–0258 in the SNR Kes 75. What determines the spin properties of a neutron star at birth and its manifestation as a magnetar-like or more classical pulsar is still not clear. Furthermore, although a few studies have suggested very massive progenitors for magnetars, there is currently no consensus on the progenitors of these objects. To address these questions, we examine their environments by studying or revisiting their securely associated SNRs. Our approach is to: 1) infer the mass of their progenitor stars through X-ray spectroscopic studies of the thermally emitting supernova ejecta, and 2) investigate the physical properties of their hosting SNRs and ambient conditions. We here highlight our detailed studies of two SNRs: G292.2–0.5, associated with the HBP J1119–6127, and Kes 73, associated with the AXP 1E 1841–045, and summarize the current view of the other (handful) HBP/magnetar-SNR associations.


2020 ◽  
Vol 38 (3) ◽  
pp. 181-187
Author(s):  
Sandeep Kumar ◽  
Y. K. Kim ◽  
T. Kang ◽  
Min Sup Hur ◽  
Moses Chung

AbstractThe nonlinear evolution of electron Weibel instability in a symmetric, counterstream, unmagnetized electron–positron e−/e+ plasmas is studied by a 2D particle-in-cell (PIC) method. The magnetic field is produced and amplified by the Weibel instability, which extracts energy from the plasma anisotropy. A weakly relativistic drift velocity of 0.5c is considered for two counterstreaming e−/e+ plasma flows. Simulations show that in a homogeneous e−/e+ plasma distribution, the magnetic field amplifies exponentially in the linear regime and rapidly decays after saturation. However, in the case of inhomogeneous e−/e+ plasma distribution, the magnetic field re-amplifies at post-saturation. We also find that the amount of magnetic field amplification at post-saturation depends on the strength of the density inhomogeneity of the upstream plasma distribution. The temperature calculation shows that the finite thermal anisotropy exists in the case of an inhomogeneous plasma distribution which leads to the second-stage magnetic field amplification after the first saturation. Such density inhomogeneities are present in a variety of astrophysical sources: for example, in supernova remnants and gamma-ray bursts. Therefore, the present analysis is very useful in understanding these astrophysical sources, where anisotropic density fluctuations are very common in the downstream region of the relativistic shocks and the widely distributed magnetic field.


2020 ◽  
Vol 498 (4) ◽  
pp. 5557-5573 ◽  
Author(s):  
Matteo Pais ◽  
Christoph Pfrommer

ABSTRACT Supernova remnant (SNR) shocks provide favourable sites of cosmic ray (CR) proton acceleration if the local magnetic field direction is quasi-parallel to the shock normal. Using the moving-mesh magnetohydrodynamical (MHD) code arepo we present a suite of SNR simulations with CR acceleration in the Sedov–Taylor phase that combine different magnetic field topologies, density distributions with gradients and large-scale fluctuations, and – for our core-collapse SNRs – a multiphase interstellar medium with dense clumps with a contrast of 104. Assuming the hadronic gamma-ray emission model for the TeV gamma-ray emission, we find that large-amplitude density fluctuations of δρ/ρ0 ≳ 75 per cent are required to strongly modulate the gamma-ray emissivity in a straw man’s model in which the acceleration efficiency is independent of magnetic obliquity. However, this causes strong corrugations of the shock surface that are ruled out by gamma-ray observations. By contrast, magnetic obliquity-dependent acceleration can easily explain the observed variance in gamma-ray morphologies ranging from SN1006 (with a homogeneous magnetic field) to Vela Junior and RX J1713 (with a turbulent field) in a single model that derives from plasma particle-in-cell simulations. Our best-fitting model for SN1006 has a large-scale density gradient of ∇n ≃ 0.0034 cm−3 pc−1 pointing from south-west to north-east and a magnetic inclination with the plane of the sky of ≲10°. Our best-fitting model for Vela Junior and RX J1713 adopts a combination of turbulent magnetic field and dense clumps to explain their TeV gamma-ray morphologies and moderate shock corrugations.


2011 ◽  
Vol 7 (S279) ◽  
pp. 335-336
Author(s):  
Tsuyoshi Inoue

AbstractUsing three-dimensional (special relativistic) magnetohydrodynamics simulations, the amplification of magnetic field behind strong shock wave is studied. In supernova remnants and gamma-ray bursts, strong shock waves propagate through an inhomogeneous density field. When the shock wave hit a density bump or density dent, the Richtmyer-Meshkov instability is induced that cause a deformation of the shock front. The deformed shock leaves vorticity behind the shock wave that amplifies the magnetic field due to the stretching of field lines.


Sign in / Sign up

Export Citation Format

Share Document