scholarly journals Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants

2020 ◽  
Vol 496 (2) ◽  
pp. 2448-2461 ◽  
Author(s):  
Matteo Pais ◽  
Christoph Pfrommer ◽  
Kristian Ehlert ◽  
Maria Werhahn ◽  
Georg Winner

ABSTRACT Galactic cosmic rays (CRs) are believed to be accelerated at supernova remnant (SNR) shocks. In the hadronic scenario, the TeV gamma-ray emission from SNRs originates from decaying pions that are produced in collisions of the interstellar gas and CRs. Using CR-magnetohydrodynamic simulations, we show that magnetic obliquity-dependent shock acceleration is able to reproduce the observed TeV gamma-ray morphology of SNRs such as Vela Jr and SN1006 solely by varying the magnetic morphology. This implies that gamma-ray bright regions result from quasi-parallel shocks (i.e. when the shock propagates at a narrow angle to the upstream magnetic field), which are known to efficiently accelerate CR protons, and that gamma-ray dark regions point to quasi-perpendicular shock configurations. Comparison of the simulated gamma-ray morphology to observations allows us to constrain the magnetic coherence scale λB around Vela Jr and SN1006 to $\lambda _B \simeq 13_{-4.3}^{+13}$ pc and $\lambda _B \gt 200_{-40}^{+50}$ pc, respectively, where the ambient magnetic field of SN1006 is consistent with being largely homogeneous. We find consistent pure hadronic and mixed hadronic-leptonic models that both reproduce the multifrequency spectra from the radio to TeV gamma-rays and match the observed gamma-ray morphology. Finally, to capture the propagation of an SNR shock in a clumpy interstellar medium, we study the interaction of a shock with a dense cloud with numerical simulations and analytics. We construct an analytical gamma-ray model for a core collapse SNR propagating through a structured interstellar medium, and show that the gamma-ray luminosity is only biased by 30 per cent for realistic parameters.

2020 ◽  
Vol 497 (3) ◽  
pp. 3581-3590
Author(s):  
Emma de Oña Wilhelmi ◽  
Iurii Sushch ◽  
Robert Brose ◽  
Enrique Mestre ◽  
Yang Su ◽  
...  

ABSTRACT Recent results obtained with gamma-ray satellites have established supernova remnants as accelerators of GeV hadronic cosmic rays. In such processes, CRs accelerated in SNR shocks interact with particles from gas clouds in their surrounding. In particular, the rich medium in which core-collapse SNRs explode provides a large target density to boost hadronic gamma-rays. SNR G39.2–0.3 is one of the brightest SNR in infrared wavelengths, and its broad multiwavelength coverage allows a detailed modelling of its radiation from radio to high energies. We reanalysed the Fermi-LAT data on this region and compare it with new radio observations from the MWISP survey. The modelling of the spectral energy distribution from radio to GeV energies favours a hadronic origin of the gamma-ray emission and constrains the SNR magnetic field to be at least ∼100 µG. Despite the large magnetic field, the present acceleration of protons seems to be limited to ∼10 GeV, which points to a drastic slow down of the shock velocity due to the dense wall traced by the CO observations, surrounding the remnant. Further investigation of the gamma-ray spectral shape points to a dynamically old remnant subjected to severe escape of CRs and a decrease of acceleration efficiency. The low-energy peak of the gamma-ray spectrum also suggests that that the composition of accelerated particles might be enriched by heavy nuclei which is certainly expected for a core-collapse SNR. Alternatively, the contribution of the compressed pre-existing Galactic cosmic rays is discussed, which is, however, found to not likely be the dominant process for gamma-ray production.


2012 ◽  
Vol 19 (3) ◽  
pp. 351-364 ◽  
Author(s):  
P. Desiati ◽  
A. Lazarian

Abstract. Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.


2021 ◽  
Vol 508 (1) ◽  
pp. 1321-1345
Author(s):  
Vincent Tatischeff ◽  
John C Raymond ◽  
Jean Duprat ◽  
Stefano Gabici ◽  
Sarah Recchia

ABSTRACT Galactic cosmic rays (GCRs) are thought to be accelerated in strong shocks induced by massive star winds and supernova explosions sweeping across the interstellar medium. But the phase of the interstellar medium from which the CRs are extracted has remained elusive until now. Here, we study in detail the GCR source composition deduced from recent measurements by the AMS-02, Voyager 1, and SuperTIGER experiments to obtain information on the composition, ionization state, and dust content of the GCR source reservoirs. We show that the volatile elements of the CR material are mainly accelerated from a plasma of temperature ≳ 2 MK, which is typical of the hot medium found in Galactic superbubbles energized by the activity of massive star winds and supernova explosions. Another GCR component, which is responsible for the overabundance of 22Ne, most likely arises from acceleration of massive star winds in their termination shocks. From the CR-related gamma-ray luminosity of the Milky Way, we estimate that the ion acceleration efficiency in both supernova shocks and wind termination shocks is of the order of 10−5. The GCR source composition also shows evidence for a preferential acceleration of refractory elements contained in interstellar dust. We suggest that the GCR refractories are also produced in superbubbles, from shock acceleration and subsequent sputtering of dust grains continuously incorporated into the hot plasma through thermal evaporation of embedded molecular clouds. Our model explains well the measured abundances of all primary and mostly primary CRs from H to Zr, including the overabundance of 22Ne.


2020 ◽  
Vol 499 (2) ◽  
pp. 2785-2802
Author(s):  
Georg Winner ◽  
Christoph Pfrommer ◽  
Philipp Girichidis ◽  
Maria Werhahn ◽  
Matteo Pais

ABSTRACT Supernova remnants (SNRs) are believed to be the source of Galactic cosmic rays (CRs). SNR shocks accelerate CR protons and electrons which reveal key insights into the non-thermal physics by means of their synchrotron and γ-ray emission. The remnant SN 1006 is an ideal particle acceleration laboratory because it is observed across all electromagnetic wavelengths from radio to γ-rays. We perform 3D magnetohydrodynamics (MHD) simulations where we include CR protons and follow the CR electron spectrum. By matching the observed morphology and non-thermal spectrum of SN 1006 in radio, X-rays, and γ-rays, we gain new insight into CR electron acceleration and magnetic field amplification. (1) We show that a mixed leptonic–hadronic model is responsible for the γ-ray radiation: while leptonic inverse-Compton emission and hadronic pion-decay emission contribute equally at GeV energies observed by Fermi, TeV energies observed by imaging air Cherenkov telescopes are hadronically dominated. (2) We show that quasi-parallel acceleration (i.e. when the shock propagates at a narrow angle to the upstream magnetic field) is preferred for CR electrons and that the electron acceleration efficiency of radio-emitting GeV electrons at quasi-perpendicular shocks is suppressed at least by a factor ten. This precludes extrapolation of current 1D plasma particle-in-cell simulations of shock acceleration to realistic SNR conditions. (3) To match the radial emission profiles and the γ-ray spectrum, we require a volume-filling, turbulently amplified magnetic field and that the Bell-amplified magnetic field is damped in the immediate post-shock region. Our work connects microscale plasma physics simulations to the scale of SNRs.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2020 ◽  
Vol 492 (3) ◽  
pp. 4246-4253 ◽  
Author(s):  
Yan Huang ◽  
Zhuo Li ◽  
Wei Wang ◽  
Xiaohong Zhao

ABSTRACT The synchrotron radiation from secondary electrons and positrons (SEPs) generated by hadronic interactions in the shock of supernova remnant (SNR) could be a distinct evidence of cosmic ray (CR) production in SNR shocks. Here, we provide a method where the observed gamma-ray flux from SNRs, created by pion decays, is directly used to derive the SEP distribution and hence the synchrotron spectrum. We apply the method to three gamma-ray bright SNRs. In the young SNR RX J1713.7−3946, if the observed GeV−TeV gamma-rays are of hadronic origin and the magnetic field in the SNR shock is B ≳ 0.5 mG, the SEPs may produce a spectral bump at 10−5–10−2 eV, exceeding the predicted synchrotron component of the leptonic model, and a soft spectral tail at ≳100 keV, distinct from the hard spectral slope in the leptonic model. In the middle-aged SNRs IC443 and W44, if the observed gamma-rays are of hadronic origin, the SEP synchrotron radiation with B ∼ 400–500 μG can well account for the observed radio flux and spectral slopes, supporting the hadronic origin of gamma-rays. Future microwave to far-infrared and hard X-ray (>100keV) observations are encouraged to constraining the SEP radiation and the gamma-ray origin in SNRs.


Author(s):  
J. A. Hinton ◽  
R. L. C. Starling

Cosmic explosions dissipate energy into their surroundings on a very wide range of time scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on approximately 10 4 year time scales. Increasingly, however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time scales, with inferred bulk Lorentz factors of approximately 1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at approximately teraelectron volt energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here, we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory, the Cherenkov Telescope Array.


2013 ◽  
Vol 9 (S296) ◽  
pp. 378-379 ◽  
Author(s):  
Hui Zhu ◽  
Wenwu Tian

AbstractSupernova remnants (SNRs) play a key role in understanding supernovae explosion mechanisms, exploring the likely sources of Galactic cosmic rays and the chemical enrichment of interstellar medium (ISM). Reliable distance determinations to Galactic SNRs are key to obtain their basic parameters, such as size, age, explosion energy, which helps us to study their environment and interstellar medium. We review the methods to determine the distances to SNRs and highlight the kinematic distance measurement by Hi absorption and CO emission observations.


2019 ◽  
Vol 490 (3) ◽  
pp. 4317-4333 ◽  
Author(s):  
S Celli ◽  
G Morlino ◽  
S Gabici ◽  
F A Aharonian

ABSTRACT The escape process of particles accelerated at supernova remnant (SNR) shocks is one of the poorly understood aspects of the shock acceleration theory. Here we adopt a phenomenological approach to study the particle escape and its impact on the gamma-ray spectrum resulting from hadronic collisions both inside and outside of a middle-aged SNR. Under the assumption that in the spatial region immediately outside of the remnant the diffusion coefficient is suppressed with respect to the average Galactic one, we show that a significant fraction of particles are still located inside the SNR long time after their nominal release from the acceleration region. This fact results into a gamma-ray spectrum that resembles a broken power law, similar to those observed in several middle-aged SNRs. Above the break, the spectral steepening is determined by the diffusion coefficient outside of the SNR and by the time dependence of maximum energy. Consequently, the comparison between the model prediction and actual data will contribute to determining these two quantities, the former being particularly relevant within the predictions of the gamma-ray emission from the halo of escaping particles around SNRs, which could be detected with future Cherenkov telescope facilities. We also calculate the spectrum of runaway particles injected into the Galaxy by an individual remnant. Assuming that the acceleration stops before the SNR enters the snowplow phase, we show that the released spectrum can be a featureless power law only if the accelerated spectrum is ∝ p−α with α > 4.


1998 ◽  
Vol 188 ◽  
pp. 121-124 ◽  
Author(s):  
Toru Tanimori

In spite of the recent progress of high energy gamma-ray astronomy, there still remains quite unclear and important problem about the origin of cosmic rays. Supernova remnants (SNRs) are the favoured site for cosmic rays up to 1016 eV, as they satisfy the requirements such as an energy input rate. But direct supporting evidence is sparse. Recently intense non-thermal X-ray emission from the rims of the Type Ia SNR SN1006 (G327.6+14.6) has been observed by ASCA (Koyama et al. 1995)and ROSAT (Willingale et al. 1996), which is considered, by attributing the emission to synchrotron radiation, to be strong evidence of shock acceleration of high energy electrons up to ~100 TeV. If so, TeV gamma rays would also be expected from inverse Compton scattering (IC) of low energy photons (mostly attributable to the 2.7 K cosmic background photons) by these electrons. By assuming the magnetic field strength (B) in the emission region of the SNR, several theorists (Pohl 1996; Mastichiadis 1996; Mastichiadis & de Jager 1996; Yoshida & Yanagita 1997) calculated the expected spectra of TeV gamma rays using the observed radio/X-ray spectra. Observation of TeV gamma rays would thus provide not only the further direct evidence of the existence of very high energy electrons but also the another important information such as the strength of the magnetic field and diffusion coefficient of the shock acceleration. With this motivation, SN1006 was observed by the CANGAROO imaging air Cerenkov telescope in 1996 March and June, also 1997 March and April.


Sign in / Sign up

Export Citation Format

Share Document