scholarly journals DARWIN – a next-generation liquid xenon observatory for dark matter and neutrino physics

2021 ◽  
Author(s):  
Kevin Thieme
Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Matthew Szydagis ◽  
Grant A. Block ◽  
Collin Farquhar ◽  
Alexander J. Flesher ◽  
Ekaterina S. Kozlova ◽  
...  

Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (weakly interacting massive particles WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the application of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.


2019 ◽  
Author(s):  
C. A. Argüelles ◽  
A. J. Aurisano ◽  
B. Batell ◽  
J. Berger ◽  
M. Bishai ◽  
...  

2020 ◽  
Vol 31 (8) ◽  
Author(s):  
Karl Ludwig Giboni ◽  
Pratibha Juyal ◽  
Elena Aprile ◽  
Yun Zhang ◽  
Junji Naganoma

2020 ◽  
Vol 83 (12) ◽  
pp. 124201 ◽  
Author(s):  
C A Argüelles ◽  
A J Aurisano ◽  
B Batell ◽  
J Berger ◽  
M Bishai ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


2013 ◽  
Vol 8 (06) ◽  
pp. T06002-T06002
Author(s):  
Y Wei ◽  
Q Lin ◽  
X Xiao ◽  
K Ni

Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


Sign in / Sign up

Export Citation Format

Share Document