scholarly journals Posteriori analysis on IceCube double pulse tau neutrino candidates

2021 ◽  
Author(s):  
Wei Tian ◽  
Rasha Abbasi ◽  
Markus Ackermann ◽  
Jenni Adams ◽  
Juanan Aguilar ◽  
...  
Author(s):  
Etsuji Ohmura ◽  
Tomohiro Okamoto ◽  
Seiji Fujiwara ◽  
Tomokazu Sano ◽  
Isamu Miyamoto

2001 ◽  
Author(s):  
Kensuke Okada
Keyword(s):  

2019 ◽  
Vol 55 (8) ◽  
Author(s):  
A. Gutiérrez-Rodríguez ◽  
M. Köksal ◽  
A. A. Billur ◽  
M. A. Hernández-Ruíz

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2449
Author(s):  
Hongyan Zhao ◽  
Jiangui Chen ◽  
Yan Li ◽  
Fei Lin

Compared with a silicon MOSFET device, the SiC MOSFET has many benefits, such as higher breakdown voltage, faster action speed and better thermal conductivity. These advantages enable the SiC MOSFET to operate at higher switching frequencies, while, as the switching frequency increases, the turn-on loss accounts for most of the loss. This characteristic severely limits the applications of the SiC MOSFET at higher switching frequencies. Accordingly, an SRD-type drive circuit for a SiC MOSFET is proposed in this paper. The proposed SRD-type drive circuit can suppress the turn-on oscillation of a non-Kelvin packaged SiC MOSFET to ensure that the SiC MOSFET can work at a faster turn-on speed with a lower turn-on loss. In this paper, the basic principle of the proposed SRD-type drive circuit is analyzed, and a double pulse platform is established. For the purpose of proof-testing the performance of the presented SRD-type drive circuit, comparisons and experimental verifications between the traditional gate driver and the proposed SRD-type drive circuit were conducted. Our experimental results finally demonstrate the feasibility and effectiveness of the proposed SRD-type drive circuit.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 508
Author(s):  
Ping Yao ◽  
Hongyan Lin ◽  
Wei Wu ◽  
Heqing Tang

Wire and arc additive manufacturing (WAAM) is usually for fabricating components due to its low equipment cost, high material utilization rate and cladding efficiency. However, its applications are limited by the large heat input decided by process parameters. Here, four 50-layer stainless steel parts with double-pulse and single-pulse metal inert gas (MIG) welding modes were deposited, and the effect of different duty ratios and current modes on morphology, microstructure, and performance was analyzed. The results demonstrate that the low frequency of the double-pulse had the effect of stirring the molten pool; therefore, the double-pulse mode parts presented a bigger width and smaller height, finer microstructure and better properties than the single-pulse mode. Furthermore, increasing the duty ratio from 35% to 65% enlarged the heat input, which then decreased the specimen height, increased the width, and decreased the hardness and the tensile strength.


Sign in / Sign up

Export Citation Format

Share Document