Single Shot Avalanche Characterization of Series and Parallel Connection of SiC Power MOSFETs

Author(s):  
Ashish Kumar ◽  
Raj Kumar Kokkonda ◽  
Subhashish Bhattacharya ◽  
Victor Veliadis
2017 ◽  
Vol 35 (13) ◽  
pp. 2541-2547 ◽  
Author(s):  
Zhi Qiao ◽  
Yudong Yao ◽  
Xiaochao Wang ◽  
Wei Fan ◽  
Zunqi Lin
Keyword(s):  

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 51
Author(s):  
Daniel Puzzuoli

Given a linear mapΦ:Mn→Mm, its multiplicity maps are defined as the family of linear mapsΦ⊗idk:Mn⊗Mk→Mm⊗Mk, whereidkdenotes the identity onMk. Let‖⋅‖1denote the trace-norm on matrices, as well as the induced trace-norm on linear maps of matrices, i.e.‖Φ‖1=max{‖Φ(X)‖1:X∈Mn,‖X‖1=1}. A fact of fundamental importance in both operator algebras and quantum information is that‖Φ⊗idk‖1can grow withk. In general, the rate of growth is bounded by‖Φ⊗idk‖1≤k‖Φ‖1, and matrix transposition is the canonical example of a map achieving this bound. We prove that, up to an equivalence, the transpose is the unique map achieving this bound. The equivalence is given in terms of complete trace-norm isometries, and the proof relies on a particular characterization of complete trace-norm isometries regarding preservation of certain multiplication relations.We use this result to characterize the set of single-shot quantum channel discrimination games satisfying a norm relation that, operationally, implies that the game can be won with certainty using entanglement, but is hard to win without entanglement. Specifically, we show that the well-known example of such a game, involving the Werner-Holevo channels, is essentially the unique game satisfying this norm relation. This constitutes a step towards a characterization of single-shot quantum channel discrimination games with maximal gap between optimal performance of entangled and unentangled strategies.


Author(s):  
Handong Gui ◽  
Ren Ren ◽  
Zheyu Zhang ◽  
Ruirui Chen ◽  
Jiahao Niu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C.-Y. Pan ◽  
M. Hao ◽  
N. Barraza ◽  
E. Solano ◽  
F. Albarrán-Arriagada

AbstractThe characterization of observables, expressed via Hermitian operators, is a crucial task in quantum mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. In this work, we implement a semi-autonomous algorithm to obtain an approximation of the eigenvectors of an arbitrary Hermitian operator using the IBM quantum computer. To this end, we only use single-shot measurements and pseudo-random changes handled by a feedback loop, reducing the number of measures in the system. Due to the classical feedback loop, this algorithm can be cast into the reinforcement learning paradigm. Using this algorithm, for a single-qubit observable, we obtain both eigenvectors with fidelities over 0.97 with around 200 single-shot measurements. For two-qubits observables, we get fidelities over 0.91 with around 1500 single-shot measurements for the four eigenvectors, which is a comparatively low resource demand, suitable for current devices. This work is useful to the development of quantum devices able to decide with partial information, which helps to implement future technologies in quantum artificial intelligence.


Sign in / Sign up

Export Citation Format

Share Document