scholarly journals Quantized refrigerator for an atomic cloud

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 155 ◽  
Author(s):  
Wolfgang Niedenzu ◽  
Igor Mazets ◽  
Gershon Kurizki ◽  
Fred Jendrzejewski

We propose to implement a quantized thermal machine based on a mixture of two atomic species. One atomic species implements the working medium and the other implements two (cold and hot) baths. We show that such a setup can be employed for the refrigeration of a large bosonic cloud starting above and ending below the condensation threshold. We analyze its operation in a regime conforming to the quantized Otto cycle and discuss the prospects for continuous-cycle operation, addressing the experimental as well as theoretical limitations. Beyond its applicative significance, this setup has a potential for the study of fundamental questions of quantum thermodynamics.

2015 ◽  
Vol 24 (2) ◽  
pp. 123-134 ◽  
Author(s):  
JOHN HARRIS ◽  
DAVID R. LAWRENCE

Abstract:The idea—the possibility—of reading the mind, from the outside or indeed even from the inside, has exercised humanity from the earliest times. If we could read other minds both prospectively, to discern intentions and plans, and retrospectively, to discover what had been “on” those minds when various events had occurred, the implications for morality and for law and social policy would be immense. Recent advances in neuroscience have offered some, probably remote, prospects of improved access to the mind, but a different branch of technology seems to offer the most promising and the most daunting prospect for both mind reading and mind misreading. You can’t have the possibility of the one without the possibility of the other. This article tells some of this story.


2021 ◽  
Vol 36 (24) ◽  
pp. 2150174
Author(s):  
Tanmoy Pandit ◽  
Pritam Chattopadhyay ◽  
Goutam Paul

We introduce quantum heat engines that perform quantum Otto cycle and the quantum Stirling cycle by using a coupled pair of harmonic oscillator as its working substance. In the quantum regime, different working medium is considered for the analysis of the engine models to boost the efficiency of the cycles. In this work, we present Otto and Stirling cycle in the quantum realm where the phase space is non-commutative in nature. By using the notion of quantum thermodynamics, we develop the thermodynamic variables in non-commutative phase space. We encounter a catalytic effect (boost) on the efficiency of the engine in non-commutative space (i.e. we encounter that the Stirling cycle reaches near to the efficiency of the ideal cycle) when compared with the commutative space. Moreover, we obtained a notion that the working medium is much more effective for the analysis of the Stirling cycle than that of the Otto cycle.


2013 ◽  
Vol 9 (S298) ◽  
pp. 381-386
Author(s):  
Şeyma Çalışkan ◽  
Elisabetta Caffau ◽  
Piercarlo Bonifacio ◽  
Luca Sbordone ◽  
Berahitdin Albayrak

AbstractWe present the abundance analysis of three very metal poor stars, CS 22166-0030 ([Fe/H]=−2.96), CS 22186-0005 ([Fe/H]=−2.70), and CS 30344-0033 ([Fe/H]=−2.90). Our study is based on high resolution spectra which were obtained from SARG (on TNG), HARPS (on 3.6m), and UVES (on VLT) spectrographs and one-dimensional ATLAS9 model atmospheres. We derived the abundances for 2, 9, and 16 atomic species in the spectrum of CS 22166-0030, CS 22186-0005, and CS 30344-0033, respectively. The Na and Mg abundances of CS 22166-0030 are highly under-abundant with respect to the solar values. The abundance patterns of CS 22186-0005 and CS 30344-0033 are consistent with the other halo stars within abundance uncertainties.


1988 ◽  
Vol 62 (03) ◽  
pp. 411-419 ◽  
Author(s):  
Colin W. Stearn

Stromatoporoids are the principal framebuilding organisms in the patch reef that is part of the reservoir of the Normandville field. The reef is 10 m thick and 1.5 km2in area and demonstrates that stromatoporoids retained their ability to build reefal edifices into Famennian time despite the biotic crisis at the close of Frasnian time. The fauna is dominated by labechiids but includes three non-labechiid species. The most abundant species isStylostroma sinense(Dong) butLabechia palliseriStearn is also common. Both these species are highly variable and are described in terms of multiple phases that occur in a single skeleton. The other species described areClathrostromacf.C. jukkenseYavorsky,Gerronostromasp. (a columnar species), andStromatoporasp. The fauna belongs in Famennian/Strunian assemblage 2 as defined by Stearn et al. (1988).


1967 ◽  
Vol 28 ◽  
pp. 207-244
Author(s):  
R. P. Kraft

(Ed. note:Encouraged by the success of the more informal approach in Christy's presentation, we tried an even more extreme experiment in this session, I-D. In essence, Kraft held the floor continuously all morning, and for the hour and a half afternoon session, serving as a combined Summary-Introductory speaker and a marathon-moderator of a running discussion on the line spectrum of cepheids. There was almost continuous interruption of his presentation; and most points raised from the floor were followed through in detail, no matter how digressive to the main presentation. This approach turned out to be much too extreme. It is wearing on the speaker, and the other members of the symposium feel more like an audience and less like participants in a dissective discussion. Because Kraft presented a compendious collection of empirical information, and, based on it, an exceedingly novel series of suggestions on the cepheid problem, these defects were probably aggravated by the first and alleviated by the second. I am much indebted to Kraft for working with me on a preliminary editing, to try to delete the side-excursions and to retain coherence about the main points. As usual, however, all responsibility for defects in final editing is wholly my own.)


1967 ◽  
Vol 28 ◽  
pp. 177-206
Author(s):  
J. B. Oke ◽  
C. A. Whitney

Pecker:The topic to be considered today is the continuous spectrum of certain stars, whose variability we attribute to a pulsation of some part of their structure. Obviously, this continuous spectrum provides a test of the pulsation theory to the extent that the continuum is completely and accurately observed and that we can analyse it to infer the structure of the star producing it. The continuum is one of the two possible spectral observations; the other is the line spectrum. It is obvious that from studies of the continuum alone, we obtain no direct information on the velocity fields in the star. We obtain information only on the thermodynamic structure of the photospheric layers of these stars–the photospheric layers being defined as those from which the observed continuum directly arises. So the problems arising in a study of the continuum are of two general kinds: completeness of observation, and adequacy of diagnostic interpretation. I will make a few comments on these, then turn the meeting over to Oke and Whitney.


1966 ◽  
Vol 24 ◽  
pp. 337
Author(s):  
W. Iwanowska

A new 24-inch/36-inch//3 Schmidt telescope, made by C. Zeiss, Jena, has been installed since 30 August 1962, at the N. Copernicus University Observatory in Toruń. It is equipped with two objective prisms, used separately, one of crown the other of flint glass, each of 5° refracting angle, giving dispersions of 560Å/mm and 250Å/ mm respectively.


2020 ◽  
Vol 43 ◽  
Author(s):  
Philip Pettit

Abstract Michael Tomasello explains the human sense of obligation by the role it plays in negotiating practices of acting jointly and the commitments they underwrite. He draws in his work on two models of joint action, one from Michael Bratman, the other from Margaret Gilbert. But Bratman's makes the explanation too difficult to succeed, and Gilbert's makes it too easy.


1999 ◽  
Vol 173 ◽  
pp. 249-254
Author(s):  
A.M. Silva ◽  
R.D. Miró

AbstractWe have developed a model for theH2OandOHevolution in a comet outburst, assuming that together with the gas, a distribution of icy grains is ejected. With an initial mass of icy grains of 108kg released, theH2OandOHproductions are increased up to a factor two, and the growth curves change drastically in the first two days. The model is applied to eruptions detected in theOHradio monitorings and fits well with the slow variations in the flux. On the other hand, several events of short duration appear, consisting of a sudden rise ofOHflux, followed by a sudden decay on the second day. These apparent short bursts are frequently found as precursors of a more durable eruption. We suggest that both of them are part of a unique eruption, and that the sudden decay is due to collisions that de-excite theOHmaser, when it reaches the Cometopause region located at 1.35 × 105kmfrom the nucleus.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Sign in / Sign up

Export Citation Format

Share Document