scholarly journals RELATIONSHIPS BETWEEN DEFORMATIONS AND STRESSES AT CONTACT ZONE OF FLAT-STRESSED COMPOSITE ELEMENT, WHICH WAS SUBJECTED CORROSION DAMAGES

Author(s):  
Vitaly I. Kolchunov ◽  
Maria S. Gubanova

 A computational model of deformation of a flat-stressed reinforced-concrete composite element in the contact zone is proposed. Deformation equations takes the form of the relationships between the final increments  of stresses and deformations for a corrosion-damaged reinforced concrete element with intersecting cracks. Coefficients of flexibility matrix of the element are obtained. These coefficients take into account the long-term deformation,  corrosion damages and concentrated shear, when intersecting cracks appear in the contact zone of the composite element. The solution to reinforced-concrete beam of composite section is given. The computational results are compared with the experimental data for such structures.

2018 ◽  
Vol 30 (1) ◽  
pp. 100-115 ◽  
Author(s):  
Naveet Kaur ◽  
Suresh Bhalla ◽  
Subhash CG Maddu

This article aims at developing a generic system for the damage and retrofitting monitoring along with long-term strength and first-stage fatigue monitoring of reinforced concrete structures using embedded Lead Zirconate Titanate sensors in the form of concrete vibration sensors. The concrete vibration sensor is a ready-to-use sensor, and its unique packaging renders it very compatible for embedment in reinforced concrete structures. In addition to cost-effectiveness, the concrete vibration sensors are also characterized by excellent structure-compatibility and durability. In this article, both finite element method and experimental investigations have been employed to establish the feasibility of using curvature (second-order derivative) and other higher order derivatives of displacement mode shapes for damage detection and retrofitting assessment. The experiments are conducted on a real-life-sized reinforced concrete beam. The concrete vibration sensors embedded on the outer faces of the reinforced concrete beam are coupled to obtain the curvature and higher order mode shapes of the beam in pristine, damaged and retrofitted conditions. It is found that the curvature mode shape–based response of concrete vibration sensors can successfully identify the location of damage both numerically and experimentally. However, the third-order mode shape is unable to correctly identify the location of damage. Before introducing damage in the beam, the effect of long-term dynamic loading from Day 6 to Day 108 after casting of the reinforced concrete beam is also monitored. Both the global monitoring technique (in which flexural rigidity of the beam is monitored) and the local electro-mechanical impedance technique (where the equivalent stiffness identified by concrete vibration sensors is monitored) successfully detected the decreasing fatigue strength of the reinforced concrete beam. Degradation of the strength of reinforced concrete beam results due to the development of micro-cracks in the concrete because of the continuous vibrations (9.3 million load cycles) experienced by it via shaker. This is the first-of-its-kind proof-of-concept application of equivalent stiffness concept for monitoring curing of a large-sized reinforced concrete structure. It is also the first study on first-stage fatigue monitoring carried out before the ‘retrofitting-stage’ of the structure. Complete experimental investigations after the ‘retrofitting-stage’ covering all three stages of fatigue have been covered by the authors in their related publication.


2011 ◽  
Vol 255-260 ◽  
pp. 1954-1958
Author(s):  
Ling Yuan Zhou ◽  
Qiao Li

A efficient 3D reinforced-concrete beam element based on the flexibility method and distributed nonlinearity theory is proposed, The sections of the beam element are divided into the plane isoparametric elements in this formulation, the section stiffness matrices are calculated through the integration of stress-strain relations of concrete including reinforcing steel effect in the section. The flexibility matrices of the sections are calculated by inverting the stiffness matrices, and the element flexibility matrix is formed through the force interpolation functions. The element stiffness matrix is evaluated through the element flexibility matrix. Finally, the buckling behaviors of a reinforced concrete beam under various eccentric loads are analyzed with the proposed formulation to illustrate its accuracy and computational efficiency.


2011 ◽  
Vol 383-390 ◽  
pp. 3157-3161
Author(s):  
Zi Qi Li ◽  
Yan Yan Fan

Based on the research of CFRP reinforced concrete beam , this article indicates that CFRP can improve greatly the fatigue performance of damage concrete beam, prolong its service life , and provide the experimental basis for long-term fatigue properties of CFRP concrete structures.


CORROSION ◽  
1988 ◽  
Vol 44 (10) ◽  
pp. 761-765 ◽  
Author(s):  
S. Feliu ◽  
J. A. Gonzalez ◽  
C. Andrade ◽  
V. Feliu

Sign in / Sign up

Export Citation Format

Share Document