Experimental producing of Cu–Cr–N composite alloys and thermodynamic modeling of their phase composition

2019 ◽  
pp. 111-122
Author(s):  
S. Yu. Melchakov ◽  
L. E. Bodrova ◽  
E. Yu. Goyda ◽  
A. B. Shubin ◽  
P. A. Somov

Composite Cu–Cr–N alloys were obtained in situ under vibration of “copper melt – chromium powder” compositions before their crystallization. Two types of alloys were prepared, where chromium powder was freely dispersed or compacted into a tablet. Atmospheric nitrogen was used as a source of chromium nitrides in the alloys. The microstructure of the alloys is represented by a copper matrix hardened with chromium particles and numerous inclusions of non-stoichiometric chromium nitrides Cr2N1–x. Thermodynamic modeling showed that the composition and quantities of chromium nitrides in the Cu–Cr–N alloy depend on the partial pressure of nitrogen above the melt.

2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


2014 ◽  
Vol 633 ◽  
pp. 245-248
Author(s):  
Xin Lin ◽  
Yong Li ◽  
Yan Jing Li ◽  
Jun Jie Zhang ◽  
Chang He Gao ◽  
...  

Specimens were prepared using iron-rich magnesia (3~1 mm、≤1 mm) and high purity magnesia (≤0.088 mm) as the main starting materials, adding tabular alumina at different size (3~2、2~1、≤1 mm) and content:3%、6%、9%、12%、15% to discover the influence of tabular alumina on sample performance. Phase composition and microstructure were also analyzed. The results show that specimen with content of 6% of corundum possessed the best comprehensive performance:apparent porosity 17%, bulk density 2.95 g·cm-3, cold crushing strength 74 MPa, refractoriness under load 1700 °C, heat shock resistance of up to 18 times. The formations of magnesium aluminate spinel and hercynite solid solution were enhanced by Fe ion at high temperatures in the iron-rich magnesia-corundum system at the presence of iron oxides, which are able to largely dissolved in periclase.


1991 ◽  
Vol 6 (10) ◽  
pp. 2054-2058 ◽  
Author(s):  
B-S. Hong ◽  
T.O. Mason

Via in situ electrical property measurements (conductivity, Seebeck coefficient) over the temperature range 500–800 °C and oxygen partial pressure range 10−4-1 atm, the equilibrium transport properties and stability range of YBa2Cu4O8 were determined. YBa2Cu4O8 behaves like the intrinsically mixed-valent compound, magnetite (Fe3O4), with small variations in electrical properties with changes in oxygen partial pressure. The decomposition boundary to YBa2Cu3O6+y (or YBa2Cu3.5O7.5±z) and CuO occurs at log(po2, atm) = −1.24 × 104/T(K) + 11.01(773 ⋚ T(K) ⋚ 1073).


1998 ◽  
Vol 533 ◽  
Author(s):  
A. Morrya ◽  
M. Sakuraba ◽  
T. Matsuura ◽  
J. Murota ◽  
I. Kawashima ◽  
...  

AbstractIn-situ heavy doping of B into Si1-xGex epitaxial films on the Si(100) substrate have been investigated at 550°C in a SiH4(6.0Pa)-GeH4(0.1−6.0Pa)-B2H6(1.25 ×10−5−3.75 × 10−2Pa)-H2(17–24Pa) gas mixture by using an ultraclean hot-wall low-pressure CVD system. The deposition rate increased with increasing GeH4 partial pressure, and it decreased with increasing B2H6 partial pressure only at the higher GeH4 partial pressure. As the B2H6 partial pressure increased, the Ge fraction scarcely changed although the lattice constant of the film decreased. These characteristics can be explained by the suppression of both the SiH4 and GeH4 adsorption/reactions in a similar degree due to B2H6 adsorption on the Si-Ge and/or Ge-Ge bond sites. The B concentration in the film increased proportionally up to 1022cm3 with increasing B2H6 partial pressure.


2008 ◽  
Vol 368-372 ◽  
pp. 1835-1837
Author(s):  
Jian Hua Nie ◽  
Ya Wei Li ◽  
Hao Yan ◽  
Yong He Liang ◽  
Yuan Bing Li

TiN/Al2O3 functionally graded composite was fabricated by in-situ aluminothermic reduction of TiO2 in coke bed from mixtures of TiO2 powder and metal Al powder. The reaction process, phase composition, and microstructure of sample treated at 1500°C for 3h were analyzed by XRD, SEM and EPMA. The results indicated that the thermite reduction of TiO2 involves several transitional stages and its initial reaction temperature is lowered by prior reaction between Al and TiO2. EPMA analysis showed that the TiN/Al2O3 ratio in TiN/Al2O3 functionally graded material products changes gradually across the samples without distinct interface between the different layers. The microstructure of the composite changes gradually, and the size of TiN grains increases from the verge region of samples to the centre of samples. These results above were in agreement with thermodynamic analysis.


1992 ◽  
Vol 275 ◽  
Author(s):  
Julia M. PhUlips ◽  
M. P. Siegal ◽  
S. Y. Hou ◽  
T. H. Tiefel ◽  
J. H. Marshall

ABSTRACTEpitaxial films of Ba2YCu3O7-δ (BYCO) as thin as 250 å A and with Jc's approaching those of the best in situ grown films can be formed by co-evaporating BaF2, Y, and Cu followed by a two-stage anneal. These results extend the work on films > 2000 Å thick by R. Feenstra et al. [J. Appl. Phys. 69, 6569 (1991)]. High quality films of these thicknesses become possible if low oxygen partial pressure [p(O2) = 4.3 Torr] is used during the high temperature portion cf the anneal (Ta). The BYCO melt line is the upper limit for Ta. The use of low p(O2) shifts the window for stable BYCO film growth to lower temperature, which allows the formation of smooth films with greater microstructural disorder than is found in films grown in p(O2) = 740 Torr at higher Ta. The best films annealed in p(O2)=4.3 Torr have Jc values a factor of four higher than do comparable films annealed in P2=740 Torr. The relationship between the T required to grow films with the strongest pinning force and p(O2) is log independent of growth method (in situ or situ) over a range of five orders of magnitude of P(O2).


Sign in / Sign up

Export Citation Format

Share Document