scholarly journals Numerical analysis of the behavior of a three-layer honeycomb panel with interlayer defects under action of dynamic load

Author(s):  
Aleksandr L. Medvedskiy ◽  
Mikhail I. Martirosov ◽  
Anton V. Khomchenko ◽  
Darina V. Dedova

The aim of the work is to study the effect of interlayer defects of the bundle type on the behavior of a rectangular flat three-layer panel with a honeycomb filler under the influence of a dynamic impact load. Methods. The problem was solved numerically using the finite element method in the Simcenter Femap and LS-DYNA (Livermore Software Technology Corp.) software complexes. For this purpose, a geometric model of a panel with a honeycomb placeholder was developed. Based on the geometric model, a finite element model of the panel was created using three-dimensional finite elements. In the software complexes, the finite element model was calculated under specified boundary conditions, then the stress fields and fracture indices in the panel were determined, taking into account and without taking into account damage. Results. The stress fields in the panel are numerically determined with and without defects. The fields of the failure indices of the panel layers under the impact load are investigated using various failure criteria (Puck, Hashin, LaRC03 (Langley Research Center)) of polymer composite materials. The analysis of the influence of a defect on the behavior of a honeycomb panel under the impact load is carried out.

2014 ◽  
Vol 716-717 ◽  
pp. 1536-1539
Author(s):  
Yan Xu ◽  
Shu Fang ◽  
Jian Qiao Fu

The suspension of fire robot, one of necessary components, directly impacts the environmental adaptability, and the strength of suspension has great importance to the life of robot. In the paper, the structure and the stress condition of the suspension was analyzed. The force condition of suspension is simplified as a 2-D diagram, the load acting on the elbow were simplified in two direction, A finite element model, which simulated the impact load and optimized the design of suspension, was established, and the result of the simulation shows the suspension structure is reasonable and the strength of the component is enough.


2015 ◽  
Vol 769 ◽  
pp. 316-319
Author(s):  
Alena Zemanova ◽  
Jan Zeman ◽  
Michal Sejnoha

Laminated glass has been developed to improve the impact resistance of brittle glass sheets and to prevent injuries and collapse of glass members. The goal of this contribution is to briefly introduce a finite element model based on the refined plate theory by Mau that can describe the response of laminated glass plates without the need for fully resolved three-dimensional simulations. Each layer is considered to behave according to the Reissner-Mindlin kinematics, complemented with membrane effects and the von Karman assumptions. The compatibility of independent layers is enforced by nodal Lagrange multipliers. Predictions of the finite element model, obtained with a MATLAB-based program LaPla (Laminated Plates) developed by the authors, are compared with simplified monolithic and layered limits and a semi-analytical solution.


2006 ◽  
Vol 326-328 ◽  
pp. 1563-1568 ◽  
Author(s):  
Ch.R. Koenig ◽  
D.H. Mueller ◽  
J. Mueller ◽  
Mircea Calomfirescu

Structural failure of fibre-reinforced polymers (FRP) caused by impact is an important factor in product development for the aircraft industry. Therefore it is necessary to obtain knowledge of the mechanisms and of the material loading during and shortly after an impact load. On account of this a Finite-Element-Model was developed with the goal to deduce design rules for impact tolerant composite materials. To verify and validate the Finite-Element-Model it is essential to have information of the state of stress on the surface of the FRP shortly after the impact. An impact test device was developed at the University of Bremen. The time variable, stress and strain conditions in composite plates are measured using photoelastic technique, strain gauges and holographic interferometry.


2010 ◽  
Vol 450 ◽  
pp. 461-465 ◽  
Author(s):  
Ibiye A. Roberts ◽  
Chang J. Wang ◽  
Mark Stanford ◽  
Kevin A. Kibble ◽  
Diane J. Mynors

Determining the three-dimensional residual stress fields and the associated distortions using numerical simulations for multi-layered parts has proved to be a challenge in additive layer manufacturing. This paper presents an innovative three-dimensional thermal-elasto-plastic finite element model for predicting the deformation and residual stress fields in TiAl6V4 parts built on steel platforms. The developed model utilises temperature dependent material physical and mechanical properties as well as latent heat of melting. Experiments conducted using surface profilometry showed good agreement with the simulation results. The finite element model was used to investigate the overall effect of the melting powder on the platform deformation and residual stresses for multiple layers of deposited powder.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2012 ◽  
Vol 268-270 ◽  
pp. 916-920
Author(s):  
Zheng Shun Wang ◽  
Wen Jia Han

In this thesis, the process of electromagnetic drying cylinder was analyzed creating by the dryer finite element model using ANSYS. The conduction thermal analysis, the applied load and solved showed the results of three major components. Which create a finite element model of the process, mainly the preprocessor using ANSYS software to create or import geometric models from other software applications, and then add the material properties. The last of the geometric model meshing and solving process need to enter solvers according to the actual situation. The setting is applied to the thermal load and conditions. Then it is proceed to the finite element solution operator. It final usually the Post 1, or Post2 view results, and based on our experience to judge correctly


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Sign in / Sign up

Export Citation Format

Share Document