Mapping of agricultural crops in Vietnam using GIS data and satellite multispectral imagery LandSat-7

2015 ◽  
Vol 901 (7) ◽  
pp. 31-35 ◽  
Author(s):  
L.A. Plastinin ◽  
◽  
Duong Hoang ◽  
2019 ◽  
Author(s):  
Luisa Feliciano-Cruz ◽  
Sarah Becker ◽  
Kristofer Lasko ◽  
Craig Daughtry ◽  
Andrew Russ

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Geofrey Soka ◽  
Nanjiva Nzunda

Quantifying ecosystem carbon stocks is vital for understanding the relationship between changes in land use and cover (LULC) and carbon emissions; however, few studies have documented the impacts of carbon cycling on Miombo ecosystems. Here, we estimate the amounts of wood carbon which is stored and lost as a result of LULC changes in Kagoma Forest Reserve (KFR) for the periods between 1988 and 2010 using GIS data, Landsat imagery, and field observations. The land cover was captured on the basis of Landsat 5 TM and Landsat 7 ETM. The amounts of wood carbon stored and lost were estimated based on four previously developed allometric models. Spatial analysis of the Landsat images shows that in the year 1988, woodlands dominated the area by covering 32.66% whereas in the year 2010 the woodlands covered only 7.34% of the total area. The findings of the current study reveal that KFR had undergone notable changes in terms of LULC for the period of 1988–2010. It was estimated that the woodlands in the KFR lost an average of 4409.79 t Cyr-1. In this study, the amount of carbon stocks stored was estimated to be 21457.02 tonnes in tree stem biomass based on the area (1226.12 ha) that was covered by woodlands. We estimated that an average of 17.79 t Ch-1 was stored in the Miombo woodlands based on the four models. The efforts to ensure sustainable management of the Miombo ecosystem can contribute to the creation of a considerable carbon sink.


2000 ◽  
Vol 40 (5) ◽  
pp. 725 ◽  
Author(s):  
D. W. Lamb

Charles Sturt University has operated an airborne multispectral imaging system as a research support and management tool over south-eastern Australian crops since 1994. Our experiences have demonstrated the utility, timeliness and cost-effectiveness of qualitative multispectral imagery for monitoring and managing spatial variability in a range of agricultural crops, yet to date the technology remains underutilised in Australia. Images showing variations in the texture of soils in paddocks are a useful indicator of the location of different soil zones for soil sampling, and can assist in siting of treatment plots within paddocks. Multispectral imagery can be used for a synoptic assessment of early weed pressure in fallow paddocks or seedling crops. Locating variability in crop emergence and, later, canopy vigour and biomass, are all potentially means of undertaking precision farming without the capital investment associated with yield mapping. However, like any remote monitoring tool, follow-up ground-truthing must always be used to establish or confirm the causes of observed variability. The use of the technology as part of a greater data acquisition strategy is recommended.


Data ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 17
Author(s):  
Bogdan M. Strimbu ◽  
George Mueller-Warrant ◽  
Kristin Trippe

The Willamette Valley, bounded to the west by the Coast Range and to the east by the Cascade Mountains, is the largest river valley completely confined to Oregon. The fertile valley soils combined with a temperate, marine climate create ideal agronomic conditions for seed production. Historically, seed cropping systems in the Willamette Valley have focused on the production of grass and forage seeds. In addition to growing over two-thirds of the nation’s cool-season grass seed, cropping systems in the Willamette Valley include a diverse rotation of over 250 commodities for forage, seed, food, and cover cropping applications. Tracking the sequence of crop rotations that are grown in the Willamette Valley is paramount to answering a broad spectrum of agronomic, environmental, and economical questions. Landsat imagery covering approximately 25,303 km2 were used to identify agricultural crops in production from 2004 to 2017. The agricultural crops were distinguished by classifying images primarily acquired by three platforms: Landsat 5 (2003–2013), Landsat 7 (2003–2017), and Landsat 8 (2013–2017). Before conducting maximum likelihood remote sensing classification, the images acquired by the Landsat 7 were pre-processed to reduce the impact of the scan line corrector failure. The corrected images were subsequently used to classify 35 different land-use classes and 137 unique two-year-long sequences of 57 classes of non-urban and non-forested land-use categories from 2004 through 2014. Our final data product uses new and previously published results to classify the western Oregon landscape into 61 different land use classes, including four majority-rule-over-time super-classes and 57 regular classes of annually disturbed agricultural crops (19 classes), perennial crops (20 classes), forests (13 classes), and urban developments (5 classes). These publicly available data can be used to inform and support environmental and agricultural land-use studies.


Author(s):  
Farhan Rafique Khan ◽  
Bhumika Das ◽  
R.K Mishra

Geological Information System (GIS) is a tool which is used in different Areas to subside the human effort. The GIS was earlier developed to maintain the geological data of earth, but during the time GIS is used in different areas for research. The purpose of the study is to utilize GIS technique in the field of geotechnical engineering in different work like preliminary survey, availability of digitize Soil data of location, topographic survey. Due to availability of GIS, data can easily digitize according to the geographical coordinates. The satellite imageries of Nagpur city are collected from Earth Explorer a digital platform for researchers to access the satellite images of any Location. This satellite images are Landsat 7 ETM+, these images are later used to form composite image to develop Landuse Landcover map.


2019 ◽  
Vol 325 (5) ◽  
pp. 65-69
Author(s):  
I.A. Trofimov ◽  
◽  
V.M. Kosolapov ◽  
L.S. Trofimova ◽  
E.P. Yakovleva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document