Detection of Genes Encoding of Extended-Spectrum and AmpC β-Lactamases in Klebsiella pneumoniae Isolates from Clinical Specimens

2015 ◽  
Vol 18 (2) ◽  
pp. 125-132
Author(s):  
Ghusoon A. Abdulhasan ◽  
◽  
Hula Y. Fadhil ◽  
Kifah A. Jasem ◽  
◽  
...  
2004 ◽  
Vol 50 (3) ◽  
pp. 137-165 ◽  
Author(s):  
Jan Walther-Rasmussen ◽  
Niels Høiby

Among the extended-spectrum β-lactamases, the cefotaximases (CTX-M-ases) constitute a rapidly growing cluster of enzymes that have disseminated geographically. The CTX-M-ases, which hydrolyze cefotaxime efficiently, are mostly encoded by transferable plasmids, and the enzymes have been found predominantly in Enterobacteriaceae, most prevalently in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Isolates of Vibrio cholerae, Acinetobacter baumannii, and Aeromonas hydrophila encoding CTX-M-ases have also been reported. The CTX-M-ases belong to the molecular class A β-lactamases, and the enzymes are functionally characterized as extended-spectrum β-lactamases. This group of β-lactamases confers resistance to penicillins, extended-spectrum cephalosporins, and monobactams, and the enzymes are inhibited by clavulanate, sulbactam, and tazobactam. Typically, the CTX-M-ases hydrolyze cefotaxime more efficiently than ceftazidime, which is reflected in substantially higher MICs to cefotaxime than to ceftazidime. Phylogenetically, the CTX-M-ases are divided into four subfamilies that seem to have descended from chromosomal β-lactamases of Kluyvera spp. Insertion sequences, especially ISEcp1, have been found adjacent to genes encoding enzymes of all four subfamilies. The class I integron-associated orf513 also seems to be involved in the mobilization of blaCTX-M genes. This review discusses the phylogeny and the hydrolytic properties of the CTX-M-ases, as well as their geographic occurrence and mode of spread.Key words: extended-spectrum β-lactamases, cefotaximases, phylogeny, dissemination, hydrolytic properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dominika Ojdana ◽  
Paweł Sacha ◽  
Piotr Wieczorek ◽  
Sławomir Czaban ◽  
Anna Michalska ◽  
...  

Bacteria belonging to the Enterobacteriaceae family that produce extended-spectrum β-lactamase (ESBL) enzymes are important pathogens of infections. Increasing numbers of ESBL-producing bacterial strains exhibiting multidrug resistance have been observed. The aim of the study was to evaluate the prevalence of blaCTX-M, blaSHV, and blaTEM genes among ESBL-producing Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis strains and to examine susceptibility to antibiotics of tested strains. In our study, thirty-six of the tested strains exhibited blaCTX-M genes (blaCTX-M-15, blaCTX-M-3, blaCTX-M-91, and blaCTX-M-89). Moreover, twelve ESBL-positive strains harbored blaSHV genes (blaSHV-18, blaSHV-7, blaSHV-2, and blaSHV-5), and the presence of a blaTEM gene (blaTEM-1) in twenty-five ESBL-positive strains was revealed. Among K. pneumoniae the multiple ESBL genotype composed of blaCTX-M-15, blaCTX-M-3, blaSHV-18, blaSHV-7, blaSHV-2, and blaSHV-5 genes encoding particular ESBL variants was observed. Analysis of bacterial susceptibility to antibiotics revealed that, among β-lactam antibiotics, the most effective against E. coli strains was meropenem (100%), whereas K. pneumoniae were completely susceptible to ertapenem and meropenem (100%), and P. mirabilis strains were susceptible to ertapenem (91.7%). Moreover, among non-β-lactam antibiotics, gentamicin showed the highest activity to E. coli (91.7%) and ciprofloxacin the highest to K. pneumoniae (83.3%). P. mirabilis revealed the highest susceptibility to amikacin (66.7%).


2002 ◽  
Vol 46 (2) ◽  
pp. 500-510 ◽  
Author(s):  
Teresa M. Coque ◽  
Antonio Oliver ◽  
José Claudio Pérez-Díaz ◽  
Fernando Baquero ◽  
Rafael Cantón

ABSTRACT Over a 12-year period (1989 to 2000), 159 Klebsiella pneumoniae isolates harboring extended-spectrum β-lactamases (ESBLs) (4.8% of the total number of K. pneumoniae isolates obtained) were recovered from 58 patients, who were mainly hospitalized in intensive care and surgery units. For 62 representative isolates from 58 patients, 31 clonal types harboring TEM-4 (n = 5), SHV-2 (n = 7), SHV2a (n = 4), SHV-5 (n = 1), CTX-M-10 (n = 13), or CTX-M-9 (n = 1) β-lactamases were identified by pulsed-field gel electrophoresis. This is the first report to document the presence of the CTX-M-10 or the CTX-M-9 β-lactamase in K. pneumoniae. These β-lactamases were previously identified in Escherichia coli isolates from Spain. Only two of five K. pneumoniae TEM-4 clones caused more than a single case of infection, with one of them spreading for 9 months. A single plasmid was detected among these TEM-4 clones. Only two of seven K. pneumoniae clones containing SHV-2 and three of four strains harboring SHV-2a were detected in more than one case of infection. Plasmids encoding SHV-2 or SHV-2a were unrelated. Four of 13 K. pneumoniae CTX-M-10 clones were found in more than one patient, with two of them recovered 2 and 5 years apart. As in the case of the SHV-2 isolates, we were unable to document a common transmissible genetic element that could explain the polyclonal structure of our isolates. Nevertheless, the spread of a single gene may be suggested by the presence of a conserved set of noncoding polymorphisms in the sequences. Most ESBL-producing K. pneumoniae clones were ephemeral, being poorly selected and maintained in the hospital setting, but the genes encoding ESBL persisted successfully over the years that the strains were recovered, probably as a minority gene population in the hospital metagenome.


2013 ◽  
Vol 79 (9) ◽  
pp. 3021-3026 ◽  
Author(s):  
Katrin Zurfluh ◽  
Herbert Hächler ◽  
Magdalena Nüesch-Inderbinen ◽  
Roger Stephan

ABSTRACTOne of the currently most relevant resistance mechanisms inEnterobacteriaceaeis the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producingEnterobacteriaceaeand to further characterize ESBL- and carbapenemase-producingEnterobacteriaceaein rivers and lakes in Switzerland. ESBL-producingEnterobacteriaceaewere detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producingKlebsiella pneumoniaesubsp.pneumoniaestrain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60Escherichia colistrains, sevenKlebsiella pneumoniaesubsp.pneumoniaestrains, fiveRaoultella planticolastrains, oneEnterobacter cloacaestrain, and oneEnterobacter amnigenusstrain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence typeE. coliB2:ST131 that is strongly associated with potentially severe infections in humans and animals.


2008 ◽  
Vol 53 (2) ◽  
pp. 465-475 ◽  
Author(s):  
C. Hal Jones ◽  
Margareta Tuckman ◽  
David Keeney ◽  
Alexey Ruzin ◽  
Patricia A. Bradford

ABSTRACT In concert with the development of novel β-lactams and broad-spectrum cephalosporins, bacterially encoded β-lactamases have evolved to accommodate the new agents. This study was designed to identify, at the sequence level, the genes responsible for the extended-spectrum-β-lactamase (ESBL) phenotypes of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates collected during the global tigecycline phase 3 clinical trials. PCR assays were developed to identify and clone the bla TEM, bla SHV, bla OXA, and bla CTX genes from clinical strains. Isolates were also screened for AmpC genes of the bla CMY, bla ACT, bla FOX, and bla DHA families as well as the bla KPC genes encoding class A carbapenemases. E. coli, K. pneumoniae, and P. mirabilis isolates with ceftazidime MICs of ≥2 μg/ml were designated possible ESBL-producing pathogens and were then subjected to a confirmatory test for ESBLs by use of Etest. Of 272 unique patient isolates, 239 were confirmed by PCR and sequencing to carry the genes for at least one ESBL, with 44% of the positive isolates harboring the genes for multiple ESBLs. In agreement with current trends for ESBL distribution, bla CTX-M-type β-lactamase genes were found in 83% and 71% of the ESBL-positive E. coli and K. pneumoniae isolates, respectively, whereas bla SHV genes were found in 41% and 28% of the ESBL-positive K. pneumoniae and E. coli isolates, respectively. Ninety-seven percent of the E. coli and K. pneumoniae isolates were tigecycline susceptible (MIC90 = 2 μg/ml), warranting further studies to define the therapeutic utility of tigecycline against strains producing ESBLs in a clinical setting.


2008 ◽  
Vol 52 (8) ◽  
pp. 2818-2824 ◽  
Author(s):  
Pattarachai Kiratisin ◽  
Anucha Apisarnthanarak ◽  
Chaitat Laesripa ◽  
Piyawan Saifon

ABSTRACT Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae have rapidly spread worldwide and pose a serious threat for health care-associated (HA) infection. We conducted molecular detection and characterization of ESBL-related bla genes, including bla TEM, bla SHV, bla CTX-M, bla VEB, bla OXA, bla PER, and bla GES, among 362 isolates of ESBL-producing E. coli (n = 235) and ESBL-producing K. pneumoniae (n = 127) collected from patients who met the definition of HA infection at two major university hospitals in Thailand from December 2004 to May 2005. The prevalence of ESBL-producing E. coli and ESBL-producing K. pneumoniae, patient demographics and the susceptibilities of these bacteria to various antimicrobial agents were described. A total of 87.3% of isolates carried several bla genes. The prevalence of bla CTX-M was strikingly high: 99.6% for ESBL-producing E. coli (CTX-M-14, -15, -27, -40, and -55) and 99.2% for ESBL-producing K. pneumoniae (CTX-M-3, -14, -15, -27, and -55). ISEcp1 was found in the upstream region of bla CTX-M in most isolates. Up to 77.0% and 71.7% of ESBL-producing E. coli and ESBL-producing K. pneumoniae, respectively, carried bla TEM; all of them encoded TEM-1. ESBL-producing K. pneumoniae carried bla SHV at 87.4% (SHV-1, -2a, -11, -12, -27, -71, and -75) but only at 3.8% for ESBL-producing E. coli (SHV-11 and -12). bla genes encoding VEB-1 and OXA-10 were found in both ESBL-producing E. coli (8.5% and 8.1%, respectively) and ESBL-producing K. pneumoniae (10.2% and 11.8%, respectively). None of the isolates were positive for bla PER and bla GES. Pulsed-field gel electrophoresis analysis demonstrated that there was no major clonal relationship among these ESBL producers. This is the first study to report CTX-M-3, CTX-M-27, CTX-M-40, SHV-27, SHV-71, and SHV-75 in Thailand and to show that CTX-M ESBL is highly endemic in the country.


Sign in / Sign up

Export Citation Format

Share Document