scholarly journals Soil organic carbon, dehydrogenase activity and fluorescein diacetate as influenced by contrasting tillage and cropping systems in Vertisols of Central India

2018 ◽  
Vol 39 (6) ◽  
pp. 1047-1053
Author(s):  
A. Kumar ◽  
◽  
V.N. Mishra ◽  
A.K. Biswas ◽  
J. Somasundaram ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 484
Author(s):  
Andrew M. Bierer ◽  
April B. Leytem ◽  
Robert S. Dungan ◽  
Amber D. Moore ◽  
David L. Bjorneberg

Insufficient characterization of soil organic carbon (SOC) dynamics in semi-arid climates contributes uncertainty to SOC sequestration estimates. This study estimated changes in SOC (0–30 cm depth) due to variations in manure management, tillage regime, winter cover crop, and crop rotation in southern Idaho (USA). Empirical data were used to drive the Denitrification Decomposition (DNDC) model in a “default” and calibrated capacity and forecast SOC levels until 2050. Empirical data indicates: (i) no effect (p = 0.51) of winter triticale on SOC after 3 years; (ii) SOC accumulation (0.6 ± 0.5 Mg ha–1 year–1) under a rotation of corn-barley-alfalfax3 and no change (p = 0.905) in a rotation of wheat-potato-barley-sugarbeet; (iii) manure applied annually at rate 1X is not significantly different (p = 0.75) from biennial application at rate 2X; and (iv) no significant effect of manure application timing (p = 0.41, fall vs. spring). The DNDC model simulated empirical SOC and biomass C measurements adequately in a default capacity, yet specific issues were encountered. By 2050, model forecasting suggested: (i) triticale cover resulted in SOC accrual (0.05–0.27 Mg ha–1 year–1); (ii) when manure is applied, conventional tillage regimes are favored; and (iii) manure applied treatments accrue SOC suggesting a quadratic relationship (all R2 > 0.85 and all p < 0.0001), yet saturation behavior was not realized when extending the simulation to 2100. It is possible that under very large C inputs that C sequestration is favored by DNDC which may influence “NetZero” C initiatives.


Author(s):  
Arvind Kumar Rai ◽  
Srinivasan Ramakrishnan ◽  
Nirmalendu Basak ◽  
Parul Sundha ◽  
A. K. Dixit ◽  
...  

2018 ◽  
Vol 64 (12) ◽  
pp. 1690-1704 ◽  
Author(s):  
Kali Krishna Hazra ◽  
Probir Kumar Ghosh ◽  
Madasur Subbabhat Venkatesh ◽  
Chaitanya Prasad Nath ◽  
Narendra Kumar ◽  
...  

2016 ◽  
Vol 5 (4) ◽  
pp. 353-361 ◽  
Author(s):  
V. Kushwa ◽  
K. M. Hati ◽  
Nishant K. Sinha ◽  
R. K. Singh ◽  
M. Mohanty ◽  
...  

Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 24
Author(s):  
Yui Osanai ◽  
Oliver Knox ◽  
Gunasekhar Nachimuthu ◽  
Brian Wilson

Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.


Sign in / Sign up

Export Citation Format

Share Document