Identification of second phase precipitates in a nickel-based superalloy fabricated by Laser Powder Bed Fusion (L-PBF)

2021 ◽  
Author(s):  
Arthur Després ◽  
Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 101037
Author(s):  
A. Després ◽  
C. Mayer ◽  
M. Veron ◽  
E.F. Rauch ◽  
M. Bugnet ◽  
...  

2021 ◽  
pp. 1-19
Author(s):  
Nandana Menon ◽  
Tanjheel Hasan Mahdi ◽  
Amrita Basak

Abstract Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (gγ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-Ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small scale businesses in fabricating high-gγ nickel-base superalloys on a desktop laser powder bed fusion AM equipment


2021 ◽  
Author(s):  
Nandana Menon ◽  
Tanjheel Hassan Mahdi ◽  
Amrita Basak

Abstract Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (γ′ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-Ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small-scale businesses in fabricating high-γ′ nickel-base superalloys on a desktop laser powder bed fusion AM equipment.


2021 ◽  
Vol 865 ◽  
pp. 158868
Author(s):  
Oscar Sanchez-Mata ◽  
Xianglong Wang ◽  
Jose Alberto Muñiz-Lerma ◽  
Sıla Ece Atabay ◽  
Mohammad Attarian Shandiz ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4930
Author(s):  
Jinghao Xu ◽  
Hans Gruber ◽  
Ru Lin Peng ◽  
Johan Moverare

An experimental printable γ′-strengthened nickel-based superalloy, MAD542, is proposed. By process optimization, a crack-free component with less than 0.06% defect was achieved by laser powder bed fusion (LPBF). After post-processing by solution heat treatment, a recrystallized structure was revealed, which was also associated with the formation of annealing twins. After the aging treatment, 60–65% γ′ precipitates were obtained with a cuboidal morphology. The success of printing and post-processing the new MAD542 superalloy may give new insights into alloy design approaches for additive manufacturing.


Sign in / Sign up

Export Citation Format

Share Document