Effect of increased β-adrenergic stimulation on intercalated disc proteins in rat cardiomyocytes

2021 ◽  
Author(s):  
Mihai Pruna ◽  
1999 ◽  
Vol 276 (3) ◽  
pp. H826-H833 ◽  
Author(s):  
Karen A. Detillieux ◽  
Johanna T. A. Meij ◽  
Elissavet Kardami ◽  
Peter A. Cattini

Fibroblast growth factor (FGF-2), a mitogenic, angiogenic, and cardioprotective agent, is reported to be released from the postnatal heart by a mechanism of transient remodeling of the sarcolemma during contraction. This release can be increased with adrenergic stimulation. RNA blotting was used to assess whether FGF-2 synthesis in neonatal rat cardiomyocytes might also be regulated by adrenergic stimulation. FGF-2 RNA levels were increased after treatment with norepinephrine for 6 h or with the α-adrenergic agonist phenylephrine for 48 h. To assess an effect on transcription, neonatal rat cardiomyocytes were transfected with a hybrid rat FGF-2 promoter/luciferase gene (−1058FGFp. luc) and treated with norepinephrine or phenylephrine for 6 or 48 h, respectively. FGF-2 promoter activity was increased two- to sevenfold in an α1-specific manner. Putative phenylephrine-responsive elements (PEREs) were identified at positions −780 and −761 relative to a major transcription initiation site. However, deletion analysis of −1058FGFp. luc showed that the phenylephrine response was independent of the putative PEREs, cell contraction, and Ca2+ influx. In transgenic mice expressing −1058FGFp. luc, a significant three- to sevenfold stimulation of FGF-2 promoter activity was detected in the hearts of two independent lines 6 h after intraperitoneal administration of phenylephrine (50 mg/kg). This increase was still apparent at 24 h but was not detected at 48 h posttreatment. Analysis of FGF-2 mRNA in normal mouse hearts revealed accumulation of the 6.1-kb transcript at 24 h. Control of local FGF-2 synthesis at the transcriptional level through adrenergic stimulation may be important in the response to injury as well as in the maintenance of a healthy myocardium.


1989 ◽  
Vol 49 ◽  
pp. 159
Author(s):  
Katsuomi Iwakura ◽  
Yasuhiro Watanabe ◽  
Masatsuitu Hori ◽  
Hiroshi Yoshi

2012 ◽  
Vol 117 (6) ◽  
pp. 1212-1222 ◽  
Author(s):  
Matthieu Biais ◽  
Romain Jouffroy ◽  
Aude Carillion ◽  
Sarah Feldman ◽  
Aude Jobart-Malfait ◽  
...  

Background The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and β-adrenoceptor stimulations. Methods The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and β-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. Results Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, P<0.001) and isometric (44±5 versus 64±3%, P<0.001) conditions concomitant with a greater decrease in intracellular pH (6.85±0.07 versus 7.12±0.07, P<0.001). The response to α-adrenergic stimulation was not modified by respiratory or metabolic acidosis. The inotropic response to β-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, P<0.001), but this effect was not observed with administration of forskolin or dibutiryl-cyclic adenosine monophosphate. This effect might be explained by a change in transmembrane pH gradient only observed with metabolic acidosis. The lusitropic response to β-adrenergic stimulation was not modified by respiratory or metabolic acidosis. Conclusion Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of β-adrenergic stimulation.


1991 ◽  
Vol 273 (2) ◽  
pp. 347-353 ◽  
Author(s):  
S J Fuller ◽  
C J Gaitanaki ◽  
R J Hatchett ◽  
P H Sugden

In the presence of 5 microM-DL-propranolol and in HCO3(-)-containing buffers, 1 microM-adrenaline acutely stimulated protein synthesis by about 25% in the anterogradely perfused rat heart. This stimulation was opposed by low (1-10 nM) concentrations of prazosin, but not by similar concentrations of yohimbine, suggesting involvement of the alpha 1-adrenoceptor. Under the same conditions, adrenaline raised intracellular pH (pHi) by about 0.1 unit. The increase in pHi induced by adrenaline was prevented by 5 nM-prazosin, but not by 5 nM-yohimbine, again suggesting involvement of the alpha 1-adrenoceptor. Since an increase in pHi stimulates protein synthesis in the heart [Sugden & Fuller (1991) Biochem. J. 273, 339-346], the increase in pHi induced by adrenaline may be involved in its stimulation of protein synthesis. Adrenaline also increased phosphocreatine concentrations. As discussed, the increase in pHi induced by adrenaline may be responsible for this effect. Using second-order polynomial regression analysis, we showed that rates of protein synthesis were significantly correlated (P less than 0.0001) with phosphocreatine concentrations. We discuss two possible reasons for this correlation: (i) increases in pHi stimulate protein synthesis and separately raise phosphocreatine concentrations, or (ii) the increase in protein synthesis rates is a consequence of the raised phosphocreatine concentrations induced by the increase in pHi. Rates of protein synthesis were not significantly correlated with ATP/ADP concentration ratios, nor with any of the following: ATP, ADP, AMP or total adenine nucleotide concentrations. In freshly isolated adult rat cardiomyocytes, the protein kinase inhibitor staurosporine (1 microM) prevented stimulation of protein synthesis by 0.3 microM-adrenaline (and by 1 microM-phorbol 12-myristate 13-acetate or 1 m-unit of insulin/ml). The results are discussed within a mechanistic framework initiated by stimulation of the hydrolysis of membrane phospholipids by alpha 1-adrenergic agonists.


2017 ◽  
Vol 312 (4) ◽  
pp. H645-H661 ◽  
Author(s):  
Carlos Enrique Guerrero-Beltrán ◽  
Judith Bernal-Ramírez ◽  
Omar Lozano ◽  
Yuriana Oropeza-Almazán ◽  
Elena Cristina Castillo ◽  
...  

Recent evidence has shown that nanoparticles that have been used to improve or create new functional properties for common products may pose potential risks to human health. Silicon dioxide (SiO2) has emerged as a promising therapy vector for the heart. However, its potential toxicity and mechanisms of damage remain poorly understood. This study provides the first exploration of SiO2-induced toxicity in cultured cardiomyocytes exposed to 7- or 670-nm SiO2 particles. We evaluated the mechanism of cell death in isolated adult cardiomyocytes exposed to 24-h incubation. The SiO2 cell membrane association and internalization were analyzed. SiO2 showed a dose-dependent cytotoxic effect with a half-maximal inhibitory concentration for the 7 nm (99.5 ± 12.4 µg/ml) and 670 nm (>1,500 µg/ml) particles, which indicates size-dependent toxicity. We evaluated cardiomyocyte shortening and intracellular Ca2+ handling, which showed impaired contractility and intracellular Ca2+ transient amplitude during β-adrenergic stimulation in SiO2 treatment. The time to 50% Ca2+ decay increased 39%, and the Ca2+ spark frequency and amplitude decreased by 35 and 21%, respectively, which suggest a reduction in sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Moreover, SiO2 treatment depolarized the mitochondrial membrane potential and decreased ATP production by 55%. Notable glutathione depletion and H2O2 generation were also observed. These data indicate that SiO2 increases oxidative stress, which leads to mitochondrial dysfunction and low energy status; these underlie reduced SERCA activity, shortened Ca2+ release, and reduced cell shortening. This mechanism of SiO2 cardiotoxicity potentially plays an important role in the pathophysiology mechanism of heart failure, arrhythmias, and sudden death. NEW & NOTEWORTHY Silica particles are used as novel nanotechnology-based vehicles for diagnostics and therapeutics for the heart. However, their potential hazardous effects remain unknown. Here, the cardiotoxicity of silica nanoparticles in rat myocytes has been described for the first time, showing an impairment of mitochondrial function that interfered directly with Ca2+ handling.


2004 ◽  
Vol 287 (4) ◽  
pp. H1435-H1445 ◽  
Author(s):  
Birgit Bölck ◽  
Götz Münch ◽  
Peter Mackenstein ◽  
Martin Hellmich ◽  
Ingo Hirsch ◽  
...  

The Na+/Ca2+ exchanger (NCX) may influence cardiac function depending on its predominant mode of action, forward mode or reverse mode, during the contraction-relaxation cycle. The intracellular Na+ concentration ([Na+]i) and the duration of the action potential as well as the level of NCX protein expression regulate the mode of action of NCX. [Na+]i and NCX expression have been reported to be increased in human heart failure. Nevertheless, the consequences of altered NCX expression in heart failure are still a matter of discussion. We aimed to characterize the influence of NCX expression on intracellular Ca2+ transport in rat cardiomyocytes by adenoviral-mediated gene transfer. A five- to ninefold (dose dependent) overexpression of NCX protein was achieved after 48 h by somatic gene transfer (Ad.NCX.GFP) versus control (Ad.GFP). NCX activity, determined by Na+ gradient-dependent 45Ca2+-uptake, was significantly increased. The protein expressions of sarco(endo)plasmic reticulum Ca2+-ATPase, phospholamban, and calsequestrin were unaffected by NCX overexpression. Fractional shortening (FS) of isolated cardiomyocytes was significantly increased at low stimulation rates in Ad.NCX.GFP. After a step-wise enhancing frequency of stimulation to 3.0 Hz, FS remained unaffected in Ad.GFP cells but declined in Ad.NCX.GFP cells. The positive inotropic effect of the cardiac glycoside ouabain was less effective in Ad.NCX.GFP cells, whereas the positive inotropic effect of β-adrenergic stimulation remained unchanged. In conclusion, NCX overexpression results in a reduced cell shortening at higher stimulation frequencies as well as after inhibition of sarcolemmal Na+-K+-ATPase, i.e., in conditions with enhanced [Na+]i. At low stimulation rates, increased NCX expression enhances both intracellular systolic Ca2+ and contraction amplitude.


2019 ◽  
Vol 151 (6) ◽  
pp. 786-797 ◽  
Author(s):  
Danna Morales ◽  
Tamara Hermosilla ◽  
Diego Varela

The activity of L-type calcium channels is associated with the duration of the plateau phase of the cardiac action potential (AP) and it is controlled by voltage- and calcium-dependent inactivation (VDI and CDI, respectively). During β-adrenergic stimulation, an increase in the L-type current and parallel changes in VDI and CDI are observed during square pulses stimulation; however, how these modifications impact calcium currents during an AP remains controversial. Here, we examined the role of both inactivation processes on the L-type calcium current activity in newborn rat cardiomyocytes in control conditions and after stimulation with the β-adrenergic agonist isoproterenol. Our approach combines a self-AP clamp (sAP-Clamp) with the independent inhibition of VDI or CDI (by overexpressing CaVβ2a or calmodulin mutants, respectively) to directly record the L-type calcium current during the cardiac AP. We find that at room temperature (20–23°C) and in the absence of β-adrenergic stimulation, the L-type current recapitulates the AP kinetics. Furthermore, under our experimental setting, the activity of the sodium–calcium exchanger (NCX) does not affect the shape of the AP. We find that hindering either VDI or CDI prolongs the L-type current and the AP in parallel, suggesting that both inactivation processes modulate the L-type current during the AP. In the presence of isoproterenol, wild-type and VDI-inhibited cardiomyocytes display mismatched L-type calcium current with respect to their AP. In contrast, CDI-impaired cells maintain L-type current with kinetics similar to its AP, demonstrating that calcium-dependent inactivation governs L-type current kinetics during β-adrenergic stimulation.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Tamer M Mohamed ◽  
Delvac Oceandy ◽  
Nasser Alatwi ◽  
Florence Baudoin ◽  
Elizabeth J Cartwright ◽  
...  

The pivotal role of neuronal nitric oxide synthase (nNOS) in regulating cardiac function has only recently been unveiled. Notably, others have shown that responsiveness to β-adrenergic stimulation is dependent on nNOS activity. In a cellular model, we showed that the Ca 2+ /calmodulin-dependent nNOS activity is reduced by overexpression of isoform 4b of the plasma membrane Ca 2+ /Calmodulin-dependent Ca 2+ -pump (PMCA4b), which binds to nNOS. We demonstrated that PMCA4b overexpression in the heart reduced β-adrenergic responsiveness in vivo via an nNOS dependent mechanism (Oceandy et al, Circulation 2007). Here we investigated the cellular mechanisms of the regulation of the β-adrenergic response by PMCA4b. We used an adenoviral system to overexpress PMCA4b (PMCA4b cells) or LacZ (control, C) in neonatal rat cardiomyocytes. PMCA4b cells showed an 18±5% and 24±5% reduction in nitric oxide (DAF-FM fluorescence) and cGMP levels, respectively (n=6, p<0.05 each) compared to C demonstrating the regulation of NO production by the PMCA4b in this system. Since nNOS has been shown to regulate phospholamban (PLB) phosphorylation, we examined phosphorylation of PLB at Ser16. PMCA4b cells showed a significant increase in Ser16-PLB at baseline (66±17%, p<0.05) compared to C. As a result of increased baseline Ser16-PLB in PMCA4b cells, β-adrenergic stimulation of PMCA4b cells using 2μM isoproter-enol (IP) showed reduced relative induction in Ser16-PLB (23±10% vs. 78±19% in C; n=5, p<0.05). Further analysis in adult cardiomyocytes isolated from our PMCA4b transgenic mice (PMCA4b TG) demonstrated that PMCA4b TG showed 3-fold higher Ser16-PLB phosphorylation at baseline compared to wild type (WT) myocytes and the relative response following β-adrenergic stimulation was significantly reduced (1.2±0.2 fold induction after IP treatment in PMCA4b TG, vs. 3.1±0.7 in WT, n=5, p<0.05). Thus, PMCA4b regulates NO production from nNOS, which in turn modulates cGMP levels and PLB phosphorylation. These findings provide mechanistic insight into the regulation of the β-adrenergic response in the heart by PMCA4b and place this Ca 2+ -pump upstream of the recently described pathway linking nNOS and Ser16-PLB phosphorylation and downstream of the β-adrenergic receptor(s).


Sign in / Sign up

Export Citation Format

Share Document