Hair follicles: bulging with stem cells

2010 ◽  
pp. 4-15
Author(s):  
Hilda Pasolli ◽  
Keyword(s):  
2020 ◽  
Vol 15 (1) ◽  
pp. 41-50
Author(s):  
Jingxu Guo ◽  
Shuwei Li ◽  
Hongyang Wang ◽  
Tinghui Wu ◽  
Zhenhui Wu ◽  
...  

AbstractObjectiveStem cells hold promise for treating hair loss. Here an in vitro mouse model was developed using outer root sheaths (ORSs) isolated from hair follicles for studying stem cell-mediated dermal papillary regeneration.MethodsUnder sterile conditions, structurally intact ORSs were isolated from hair follicles of 3-day-old Kunming mice and incubated in growth medium. Samples were collected daily for 5 days. Stem cell distribution, proliferation, differentiation, and migration were monitored during regeneration.ResultsCell proliferation began at the glass membrane periphery then spread gradually toward the membrane center, with the presence of CD34 and CD200 positive stem cells involved in repair initiation. Next, CD34 positive stem cells migrated down the glass membrane, where some participated in ORS formation, while other CD34 cells and CD200 positive cells migrated to hair follicle centers. Within the hair follicle matrix, stem cells divided, grew, differentiated and caused outward expansion of the glass membrane to form a dermal papillary structure containing alpha-smooth muscle actin. Neutrophils attracted to the wound site phagocytosed bacterial and cell debris to protect regenerating tissue from infection.ConclusionIsolated hair follicle ORSs can regenerate new dermal papillary structures in vitro. Stem cells and neutrophils play important roles in the regeneration process.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Agnieszka Owczarczyk-Saczonek ◽  
Magdalena Krajewska-Włodarczyk ◽  
Anna Kruszewska ◽  
Łukasz Banasiak ◽  
Waldemar Placek ◽  
...  

Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton’s jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.


2017 ◽  
Vol 4 (7) ◽  
pp. 58-58 ◽  
Author(s):  
Pietro Gentile ◽  
Maria G. Scioli ◽  
Alessandra Bielli ◽  
Augusto Orlandi ◽  
Valerio Cervelli

2019 ◽  
Vol 20 (14) ◽  
pp. 3446 ◽  
Author(s):  
Pietro Gentile

Hair bio-engineering has risen at the crossing point of various manipulations to meet a clinical requirement for innovations to advance hair growth. The authors reported the microscopic and trichoscopic results of an autologous cell biological technique to compare, through histological, immunocytochemistry, and cytospin analysis, hair re-growth obtained by micro-grafts from scalp tissue containing Human Intra- and Extra-Dermal Adipose Tissue-Derived Hair Follicle Stem Cells (HD-AFSCs) versus placebo (saline solution). An autologous solution of micro-grafts was obtained from mechanical fragmentation and centrifugation of scalp biopsy’s (2 × 2 mm) using “Gentile protocol”. The micro-grafts solution was mechanically infiltrated on half of the selected patients’ scalps with Androgenic Alopecia (Norwood–Hamilton 2–5 and Ludwig 1–2). The other half was infiltrated with saline solution. Three injections were performed to each patient at 45-day intervals. Of the 35 patients who were enrolled, 1 was excluded and 1 was rejected. 23 and 44 weeks after the last micro graft’s injections, the patients displayed a hair density improvement, with a mean increment of 33% ± 7.5% and 27% ± 3.5% respectively, contrasted with baseline values, for the treated region. Microscopic assessment appeared, in scalp biopsies, to show an expansion in the number of hair follicles per mm2 following 11 months from the last micro-grafts application compared with baseline (1.4 + 0.27 versus 0.46 + 0.15, respectively; p < 0.05). HD-AFSCs contained in micro-grafts may represent a safe and effective alternative therapy option against hair loss.


Sign in / Sign up

Export Citation Format

Share Document