scholarly journals A Mouse Model for Studying Stem Cell Effects on Regeneration of Hair Follicle Outer Root Sheaths

2020 ◽  
Vol 15 (1) ◽  
pp. 41-50
Author(s):  
Jingxu Guo ◽  
Shuwei Li ◽  
Hongyang Wang ◽  
Tinghui Wu ◽  
Zhenhui Wu ◽  
...  

AbstractObjectiveStem cells hold promise for treating hair loss. Here an in vitro mouse model was developed using outer root sheaths (ORSs) isolated from hair follicles for studying stem cell-mediated dermal papillary regeneration.MethodsUnder sterile conditions, structurally intact ORSs were isolated from hair follicles of 3-day-old Kunming mice and incubated in growth medium. Samples were collected daily for 5 days. Stem cell distribution, proliferation, differentiation, and migration were monitored during regeneration.ResultsCell proliferation began at the glass membrane periphery then spread gradually toward the membrane center, with the presence of CD34 and CD200 positive stem cells involved in repair initiation. Next, CD34 positive stem cells migrated down the glass membrane, where some participated in ORS formation, while other CD34 cells and CD200 positive cells migrated to hair follicle centers. Within the hair follicle matrix, stem cells divided, grew, differentiated and caused outward expansion of the glass membrane to form a dermal papillary structure containing alpha-smooth muscle actin. Neutrophils attracted to the wound site phagocytosed bacterial and cell debris to protect regenerating tissue from infection.ConclusionIsolated hair follicle ORSs can regenerate new dermal papillary structures in vitro. Stem cells and neutrophils play important roles in the regeneration process.

Author(s):  
Christian Olszewski ◽  
Jessika Maassen ◽  
Rebecca Guenther ◽  
Claudia Skazik-Voogt ◽  
Angela Gutermuth

AbstractCorneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients. Graphical Abstract


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Agnieszka Owczarczyk-Saczonek ◽  
Magdalena Krajewska-Włodarczyk ◽  
Anna Kruszewska ◽  
Łukasz Banasiak ◽  
Waldemar Placek ◽  
...  

Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton’s jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 243 ◽  
Author(s):  
Monica Forni ◽  
Chiara Bernardini ◽  
Fausto Zamparini ◽  
Augusta Zannoni ◽  
Roberta Salaroli ◽  
...  

Vascularization is a crucial factor when approaching any engineered tissue. Vascular wall–mesenchymal stem cells are an excellent in vitro model to study vascular remodeling due to their strong angiogenic attitude. This study aimed to demonstrate the angiogenic potential of experimental highly porous scaffolds based on polylactic acid (PLA) or poly-e-caprolactone (PCL) doped with calcium silicates (CaSi) and dicalcium phosphate dihydrate (DCPD), namely PLA-10CaSi-10DCPD and PCL-10CaSi-10DCPD, designed for the regeneration of bone defects. Vascular wall–mesenchymal stem cells (VW-MSCs) derived from pig thoracic aorta were seeded on the scaffolds and the expression of angiogenic markers, i.e. CD90 (mesenchymal stem/stromal cell surface marker), pericyte genes α-SMA (alpha smooth muscle actin), PDGFR-β (platelet-derived growth factor receptor-β), and NG2 (neuron-glial antigen 2) was evaluated. Pure PLA and pure PCL scaffolds and cell culture plastic were used as controls (3D in vitro model vs. 2D in vitro model). The results clearly demonstrated that the vascular wall mesenchymal cells colonized the scaffolds and were metabolically active. Cells, grown in these 3D systems, showed the typical gene expression profile they have in control 2D culture, although with some main quantitative differences. DNA staining and immunofluorescence assay for alpha-tubulin confirmed a cellular presence on both scaffolds. However, VW-MSCs cultured on PLA-10CaSi-10DCPD showed an individual cells growth, whilst on PCL-10CaSi-10DCPD scaffolds VW-MSCs grew in spherical clusters. In conclusion, vascular wall mesenchymal stem cells demonstrated the ability to colonize PLA and PCL scaffolds doped with CaSi-DCPD for new vessels formation and a potential for tissue regeneration.


2013 ◽  
Vol 24 (24) ◽  
pp. 3939-3944 ◽  
Author(s):  
Shangxi Liu ◽  
Andrew Leask

It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.


Science ◽  
2019 ◽  
Vol 366 (6470) ◽  
pp. 1218-1225 ◽  
Author(s):  
Shiri Gur-Cohen ◽  
Hanseul Yang ◽  
Sanjeethan C. Baksh ◽  
Yuxuan Miao ◽  
John Levorse ◽  
...  

Tissues rely on stem cells (SCs) for homeostasis and wound repair. SCs reside in specialized microenvironments (niches) whose complexities and roles in orchestrating tissue growth are still unfolding. Here, we identify lymphatic capillaries as critical SC-niche components. In skin, lymphatics form intimate networks around hair follicle (HF) SCs. When HFs regenerate, lymphatic–SC connections become dynamic. Using a mouse model, we unravel a secretome switch in SCs that controls lymphatic behavior. Resting SCs express angiopoietin-like protein 7 (Angptl7), promoting lymphatic drainage. Activated SCs switch to Angptl4, triggering transient lymphatic dissociation and reduced drainage. When lymphatics are perturbed or the secretome switch is disrupted, HFs cycle precociously and tissue regeneration becomes asynchronous. In unearthing lymphatic capillaries as a critical SC-niche element, we have learned how SCs coordinate their activity across a tissue.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Hanluo Li ◽  
Federica Francesca Masieri ◽  
Marie Schneider ◽  
Alexander Bartella ◽  
Sebastian Gaus ◽  
...  

Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.


2020 ◽  
Author(s):  
Mélanie Velier ◽  
Alexia MATTEI ◽  
Stéphanie SIMONCINI ◽  
Jérémy MAGALON ◽  
Laurent GIRAUDO ◽  
...  

Abstract Background: Vocal folds (VF) scarring leads to severe dysphonia which negatively impacts daily life of patients. Current therapeutic options are limited due in large part to the high complexity of the micro-structure of the VF. Innovative therapies derived from adipose tissue such as stromal vascular fraction (SVF) or adipose derived stromal/ stem cells (ASC) are currently being evaluated in this indication and paracrine anti-fibrotic effects are considered as predominant mechanisms. Methods: The paracrine anti-fibrotic effects of SVF and ASC from healthy donors were tested in an innovative in vitro fibrogenesis model employing human VF fiboblasts (hVFF) and the principles of macromolecular crowding (MMC). Biosynthesis of collogen and alpha-smooth-muscle actin (αSMA) expression in hVFF were quantified after five days of indirect coculture with ASC or SVF using silver stain, western blot and RT-qPCR analysis. Results: Fibrogenesis was promoted by addition of transforming growth factor beta 1 (TGFβ1) combined with MMC characterized by an enhanced deposition of fibrillar collagens and the acquisition of a myofibroblast phenotype (overexpression of αSMA). Adipose-derived therapies led to a reduction in the αSMA expression and the collagen content was lower in hVFF co-cultivated with SVF. Discussion: ASC and SVF promoted significant prevention of fibrosis in an in vitro fibrogenesis model through paracrine mechanisms, supporting further development of adipose-derived cellular therapies in VF scarring.


2011 ◽  
Vol 22 (14) ◽  
pp. 2532-2540 ◽  
Author(s):  
Kerry-Ann Nakrieko ◽  
Alena Rudkouskaya ◽  
Timothy S. Irvine ◽  
Sudhir J. A. D'souza ◽  
Lina Dagnino

Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15–expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4167-4167
Author(s):  
Alicia Rovo ◽  
Sandrine Meyer-Monard ◽  
Dominik Heim ◽  
Caroline Arber ◽  
Jakob R. Passweg ◽  
...  

Abstract Several reports suggest that hematopoietic stem cell (HSC) develops unexpected plasticity and can form non-hematopoietic tissue. However the intrinsic plasticity of these cells has been questioned suggesting that such cells might fuse with other cells giving the appearance of differentiation. Most of the controversy over the mechanism arises from the techniques that are used to track and characterize the progenitor cell in different tissues. In the clinical setting there are no prospective quantitative studies in the human being. Objective: we assessed in a prospective study the incidence and extent of donor type chimerism in blood and non-hematopoietic cells tissue in allogeneic HSC transplants irrespective of donor type, stem cell source, conditioning and disease category. We focused on tissues with high need of organ repair: following conditioning and free of blood contamination: hair follicles. In a preliminary report we showed hair chimerism results from 53 long term survivors of allogeneic HSCT. In those recipients donor cells did not contribute to hair follicle repair. We now extend the study by increasing the number of long term patients and including short term survivors after successful engraftment. Methods: all consecutive male and female patients above 18 years old, with a full donor chimerism of hemopoiesis at last control were included. The visit included: anamnesis, clinical examination and chimerism from peripheral blood and hair follicles. Chimerism was analyzed by PCR-based amplification of 9 different short tandem repeat (STR) loci and the amelogenin locus, detecting a minor cell population ≥3%. We minimized the risk of blood contamination by careful hair follicles washing according to the procedure used in forensic medicine. The protocol was approved by the Ethics Committee. Results: between April 2003 and July 2004, 145 patients were invited to participate in this study, 119 patients (82%) accepted, 4 patients were excluded due to insufficient hair DNA; therefore the study included 100 long term (≥ 24 months of follow-up) and 15 short term (1–12 month follow-up) patients. Population demographic characteristics and results Conclusions: we observed a high grade of acceptance for participation in the study. In this population all hair follicles chimerism showed 100% recipient alleles, there was no difference between recipients with short or long term follow-up after HSCT. Hematopoietic stem cells from donor did not make a major contribution to repair hair growth in recipients. Contamination by hematopoietic cells can be excluded in this study due to the fact that we found no donor alleles in the hair analyzed. Follow up after HSCT(months) ≥ 24 1–12 N 100 15 Gender Male/Female 59/41 10/ 5 Median age at HSCT 36 (range 6–63) 40 (range 17–50) Median age at follow up 43 (range 20–66) 40 (range 18–51) Median follow up (months) 96 (range 24–264) 8 (range 2–12) Donor gender Male/Female 58/42 9/6 Diagnosis to transplantation Severe aplastic anemia 6 0 Hematological malignancy 94 15 HLA Type donor identical sibling 85 12 matched related 1 0 mismatched related 3 1 matched unrelated 11 2 Source PB/BM 33/67 15/0 Conditioning High intensity 85 13 Low intensity 15 2 Acute GVHD no/yes 25/75 5/10 Chronic GVHD no/yes 41/59 6/9 Blood chimerism 100% donor alleles 98 15 90–95% donor alleles 2 0 Hair chimerism 100% recipient alleles 100 15


2005 ◽  
Vol 17 (2) ◽  
pp. 238
Author(s):  
J. Motlik ◽  
P. Vodicka ◽  
J. Klima ◽  
K. Smetana ◽  
F. Liu ◽  
...  

The mammalian brain and epidermis contain stem cells, so-called neural stem cells (NSC) and epidermal stem cells (EpSC). To achieve the full therapeutic potential of stem cells, appropriate animal models have to be used to establish the sequence of pathological changes and to test potential therapies to block these changes. In the following studies miniature pigs were used as a biomedical model. We isolated multipotent cells from brains of porcine fetuses for future use in allotransplantation experiments in the inbred miniature pig strain. Brain tissue from 40- and 80-day-old porcine fetuses was mechanically dissociated, and cells were cultured in serum-free F12/DMEM medium with B27 and N2 supplements, EGF and bFGF. In 3–5 days some cells divided and formed floating spheres that were dissociated to single cell suspension and formed secondary spheres in culture. At all time points tested, the spheres represented mixtures of undifferentiated cells stained with nestin and Ki-67 antibodies and already differentiated neurons (Tu-20, MAP2) and glia (GFAP). After being plated on laminin/fibronectin coated coverslips and cultured in medium containing 2% FBS or 1 μM retinoic acid, the spheres adhered to the surface, and flattened, and cells started to migrate out. After immunofluorescence staining with antibodies to neuronal markers Tu-20 and MAP2, glial marker GFAP and oligodendrocyte marker CNPase showed that all the three cell types were present among differentiated cells. The EpSC are characterized by a slow and unlimited proliferation rate and, therefore, they retain labelled precursors of DNA more extensively than other keratinocytes. The main pool of EpSC is located in the bulge region of the hair follicle root sheath. A new procedure to isolate porcine hair follicles including their root sheaths was developed. The keratinocytes that migrated from hair follicles in the presence of feeder cells were poorly differentiated and specifically expressed galectin-1 or galectin-1-binding sites in their nuclei in co-localization with ΔNp63α. The exclusion of feeder cells from experimental system induced formation of spheroid bodies from these keratinocytes. Approximately one-third of these spheroids were able to adhere to a surface precolonized with feeder cells and to start forming normally growing colonies. Porcine hair follicles represent an excellent model for study of the functional phenotype of hair follicle-originated keratinocytes, and the endogenous lectin Gal-1 seems to be a potential marker of the porcine stem cell compartment of the hair follicle under in vitro conditions.


Sign in / Sign up

Export Citation Format

Share Document