Faculty Opinions recommendation of Morphogenesis and renewal of hair follicles from adult multipotent stem cells.

Author(s):  
Jonathan Slack
2005 ◽  
Vol 102 (41) ◽  
pp. 14677-14682 ◽  
Author(s):  
S. Claudinot ◽  
M. Nicolas ◽  
H. Oshima ◽  
A. Rochat ◽  
Y. Barrandon

2017 ◽  
Vol 39 (3) ◽  
pp. 171-180 ◽  
Author(s):  
R G Vasyliev ◽  
A E Rodnichenko ◽  
O S Gubar ◽  
A V Zlatska ◽  
I M Gordiienko ◽  
...  

Aim: The purpose of this work was to obtain, multiply and characterize the adult neural crest-derived multipotent stem cells from human hair follicle for their further clinical use. Materials and Methods: Adult neural crest-derived multipotent stem cells were obtained from human hair follicle by explant method and were expanded at large-scale up to a clinically significant number. The resulted cell cultures were examined by flow cytometry and immunocytochemical analysis. Their clonogenic potential, ability to self-renewal and directed multilineage differentiation were also investigated. Results: Cell cultures were obtained from explants of adult human hair follicles. Resulted cells according to morphological, phenotypic and functional criteria satisfied the definition of neural crest-derived multipotent stem cells. They had the phenotype Sox2+Sox10+Nestin+CD73+CD90+CD105+CD140a+CD 140b+CD146+CD166+CD271+CD349+ CD34-CD45-CD56-HLA-DR-, showed high clonogenic potential, ability to self-renewal and directed differentiation into the main derivatives of the neural crest: neurons, Schwann cells, adipocytes and osteoblasts. Conclusion: The possibility of a large-scale expansion of adult neural crest-derived multipotent stem cells up to 40–200·106 cells from minimal number of hair follicles with retention of their phenotype and functional properties are the significant step towards their translation into the clinical practice.


Cell ◽  
2001 ◽  
Vol 104 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Hideo Oshima ◽  
Ariane Rochat ◽  
Cécile Kedzia ◽  
Koji Kobayashi ◽  
Yann Barrandon

2010 ◽  
pp. 4-15
Author(s):  
Hilda Pasolli ◽  
Keyword(s):  

2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2020 ◽  
Vol 15 (1) ◽  
pp. 41-50
Author(s):  
Jingxu Guo ◽  
Shuwei Li ◽  
Hongyang Wang ◽  
Tinghui Wu ◽  
Zhenhui Wu ◽  
...  

AbstractObjectiveStem cells hold promise for treating hair loss. Here an in vitro mouse model was developed using outer root sheaths (ORSs) isolated from hair follicles for studying stem cell-mediated dermal papillary regeneration.MethodsUnder sterile conditions, structurally intact ORSs were isolated from hair follicles of 3-day-old Kunming mice and incubated in growth medium. Samples were collected daily for 5 days. Stem cell distribution, proliferation, differentiation, and migration were monitored during regeneration.ResultsCell proliferation began at the glass membrane periphery then spread gradually toward the membrane center, with the presence of CD34 and CD200 positive stem cells involved in repair initiation. Next, CD34 positive stem cells migrated down the glass membrane, where some participated in ORS formation, while other CD34 cells and CD200 positive cells migrated to hair follicle centers. Within the hair follicle matrix, stem cells divided, grew, differentiated and caused outward expansion of the glass membrane to form a dermal papillary structure containing alpha-smooth muscle actin. Neutrophils attracted to the wound site phagocytosed bacterial and cell debris to protect regenerating tissue from infection.ConclusionIsolated hair follicle ORSs can regenerate new dermal papillary structures in vitro. Stem cells and neutrophils play important roles in the regeneration process.


Sign in / Sign up

Export Citation Format

Share Document